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Evaluating the influence of interdisciplinary research is important to the development
of science. This work considers the large and small disciplines, calculates the
interdisciplinary distance, and analyzes the influence of interdisciplinary behavior
and interdisciplinary distance in the academic network. The results show that the risk
of interdisciplinary behavior in the large discipline is more significant than the
benefits. The peer in the small disciplines will tend to agree with the results of
the small discipline across the large discipline. We further confirmed this conclusion
by utilizing PSM-DID. The analysis between interdisciplinary distance and scientists’
influence shows that certain risks will accompany any distance between disciplines.
However, there still exists a “Sweet Spot” which could bring significant rewards.
Overall, this work provides a feasible approach to studying and understanding
interdisciplinary behaviors in science.
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1 Introduction

Modern science aims to solve complex and large-scale social and natural problems [1, 2].
These systematic researches raises higher requirements on participating research team [3–5],
which raises higher requirements on participating research teams. For example, collaborators
may need expertise in different disciplines [6]. Furthermore, with the in-depth penetration of
interdisciplinary expertise, the inherent boundaries of science have been broken, and
interdisciplinary behavior has become more popular in modern science [7]. In addition,
some pioneering researches involve expertise that often exceeds the scope of knowledge of a
single discipline [8, 9]. Nowadays, interdisciplinary research achieves knowledge
breakthroughs and innovations through colliding ideas between different disciplines,
which is considered a significant feature and future trend of science society [10].
However, the study and the underlying operation mechanisms of interdisciplinarity are
still in their infancy. With the successive emergence of academic databases, e.g., Web of
Science, Scopus, PubMed, and Microsoft Academic Graph, these databases provide data
support for interdisciplinary research. Currently, interdisciplinary research mainly focuses
on three aspects: 1) interdisciplinary metrics; 2) interdisciplinary-related policies and
funding; and 3) interdisciplinary influence.

The most commonly used measurements to evaluate interdisciplinarity are publications
and citations. And the derived index of interdisciplinarity quantifies the diversity of disciplines
involved in a paper [11, 12]. Based on the publications, interdisciplinary diversity can define
with three dimensions [13], i.e., variety, balance, and disparity. Subsequent research has
expanded the measurement dimensions by adding the concept of similarity and adopting
cohesiveness [14]. Meanwhile, interdisciplinary research related to citation has also been
explored and discovered. For example, the analysis based on citation showed that the knowledge
structure of literature has changed and became increasingly interdisciplinary [15]. Furthermore,
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a recent study further explored the interdisciplinary citation index and
the weighted forms, and conducted verification in different
disciplines [16].

Interdisciplinary research has attracted more and more attention
and one of these foci is to investigate the policy and funding of
interdisciplinary research [17–20]. Several prominent institutions
have begun to emphasize and encourage the development of
interdisciplinary research, such as the interdisciplinary development
program of the National Academy of Sciences [21]. However, the
evaluation of interdisciplinary funding in the academic field is mixed.
One voice says interdisciplinary research is merely a policy incentive
without financial support [22], i.e., interdisciplinary research is often
unrewarding. For example, researchers have shown that
interdisciplinary research has a lower citation and funding success
rate [23]. On the contrary, another voice against this conclusion [24]
showed that interdisciplinary scientists play an essential role in
knowledge dissemination and are superior to scientists in
traditional research for both the amount and scale of funding.

Furthermore, the underlying relationship between
interdisciplinarity and scientists’ influence [25–27] remains to be
investigated. Previous researches provide conflicting evidence. On
the one hand, it may be caused by the different definitions of
interdisciplinarity. For example, scientists find that
interdisciplinarity in physics has a negative influence when they
measure the interdisciplinary by calculating the proportion of
papers published in other disciplines [28]. Meanwhile, studies on
biomedical disciplines show a negative correlation between
interdisciplinarity and citation growth [29]. However, a recent
study indicates that interdisciplinary papers receive more citations
when interdisciplinarity is combined with novelty [30]. Furthermore,
research about journals’ analysis shows that papers published in
journals with multiple disciplinary classifications receive fewer
citations than papers published in disciplinary journals with clear
disciplinary boundaries [31]. On the other hand, interdisciplinary
analysis based on specific disciplines may lead to deviations. For
example, biology and chemistry have a high degree of overlap in
expertise, and collaborations among these disciplines tend to receive
high citations in target disciplines, both for biology and chemistry.
Meanwhile, low citation rates in computer science and humanities
interdisciplinary may be caused by the low coverage of literature
published in the interdisciplinary disciplines [32].

Although academic fields spend an enormous amount of time and
energy on analyzing interdisciplinary behavior, the relationship
between interdisciplinary and scientists’ influence is still in its
infancy. In this work, we propose the concepts of large and small
disciplines and compare the changes in the influence of papers and
scientists under interdisciplinary behavior. The main contributions of
this work are summarized as follows.

• Our work examines a total of 4.9 million papers over the last
20 years and utilizes statistics and causal inference to quantify
scientists’ influence on interdisciplinary behavior.

• We find that the risk is greater than the benefit for the large
across small discipline, and the opposite trend in the small
discipline. Furthermore, we explore the relationship between
scientists’ influence and interdisciplinary distance. The results
suggest that there exists a “Sweet Spot” which could bring
significant rewards.

• We reveal and analyze the causal relationship between scientists’
influence and interdisciplinary behavior.

The rest of the paper is organized as follows. Section 2 introduces
the data preparation and the methods. Section 3 demonstrates the
results of scientists’ influence on interdisciplinary behavior. Finally,
Section 4 concludes the investigation with some discussions.

2 Dataset and methods

2.1 Data preparation

This work uses the dataset from Aminer 1. As the release dataset
version continues to update, it has become more popular and used for
analyzing the information spread [33], studying the scientific influence
[34–36], building recommendations in academic networks [37, 38],
researching citation and cooperation networks [39–42], and
developing the prediction in academic networks [43, 44]. This
work adopts the 12th version of the dataset, which includes
4.9 million papers from 113,887 disciplines. The majority of papers
contain the paper number, title, scientists, publication, citation, and
field information [45]. Specifically, the field information is extracted
from Mircosoft Academic Graph (MAG) [46], which contains field
names and the weight w for fields of study. We selected
3,054,175 papers from 2000 to 2019, including 3,052,873 papers
containing field information and 3,051,022 papers containing more
than two fields information. For papers without two fields’
information, we consider the field information according to the
fields’ proportion of the reference list, e.g., for paper P, the field A,
B and C is 50%, 40% and 10% in the reference list, we attribute field A
and B to the paper P.

2.2 Field-normalization

The influence meaning of citations in different fields is different. In
order to avoid the bias, field-normalization is needed. In this work, we
introduce the method in [47], and use a weight of the paper given by
the dataset to eliminate the impact of the field. Specifically, we define
the citation Cf of paper p by,

Cf � ∑
k

i�1

wi

w1 + w2 +/ + wk
p
Cp

Ci

(1)

Here, k is the total number of fields covered by paper p, i is one of the
fields (i = 1, 2, 3, . . ., k), and wi is the weight of the i-th field; the field of
research with weight w are given by the dataset; Cp is the number of
citations we counted in the dataset; Ci is the total number of citations
received in the i-th field.

2.3 Classification and distance for discipline

Our work explores the influence of interdisciplinary behavior
based on large and small disciplines on scientists. Specifically, we
extract the major and minor disciplines for the paper according to the
field weight w and define the top 5% as the large discipline and the
bottom 50% as the small discipline. Then, we map the relationship
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between each paper and large or small disciplines according to
citations. For example, paper A has received 10, 5, and two
citations in F1, F2, and F3 disciplines, respectively. We can
determine that the major discipline of paper A is F1, and the
minor is F2. Finally, according to the major and minor disciplines,
all papers in the data set can be classified as the large discipline set Pl−l,
the large cross the small discipline set Pl−s, the small discipline set Ps−s,
and the small cross the large discipline set Ps−l.

To quantify the discipline distance of inter-discipline, we utilize
the method proposed by recent literature to measure the research
interest evolution [48]. Specifically, all papers are attributed to the first
scientist, and we have counted all authors in the data set who have
continuously published papers for more than 6 years, and the
maximum “tolerance year” is 2 years. For example, a scientist who
has continuously published papers in 2000 and 2001, and then
continued to publish papers in 2003, is also considered as
consecutive publisher. Then we consider paper series for each
consecutive publishing scientist as sorted by the publication period.
We select three papers at the beginning and the end of the paper series
for each scientist, regarded as the scientific outputs of the early and
later careers, respectively. It should be noted that the early and late
career we defined is not the scientists’ career period, but the period
before and after in a long time series. The dataset provides the
discipline information representation of each paper, and we
calculate the early and later discipline vector according to the
discipline weight w. Finally, we can quantify the distance between
the early and later career disciplines by calculating the cosine similarity
of early and later career discipline vectors J. Figure 1 demonstrates an
example of the specific calculation.

2.4 Causal inference

Different from correlation analysis, causal inference is not only
based on correlation but also requires the temporal order of causality.

Thus, correlation is only a necessary and insufficient condition for
causal inference. In recent decades, causal inference has been
dramatically applied in various fields, especially in finance [49] and
education [50].With the development of artificial intelligence [51–53],
causal inference has new developments and applications [54, 55].
Currently, the most basic causal inference is to estimate the treatment
effect by comparing the differences between the observation results of
the control and treatment groups. the expected value of the treatment
effect of all individuals receiving treatment, i.e., Average Treatment
Effect on the Treated (ATT), can be defined as,

ATT � E Yi 1( ) − Yi 0( ) | Di � 1[ ] (2)
where Di = 1 means individual i is disposed, Yi(1) represents the

observed value of individual i after treatment, Yi(0) represents the
observed value of individual i in the control group. However,
randomized controlled trials will consume a lot of time and
resources, individuals participating in the experiment can only be
grouped into the control or treatment group. Therefore, the current
causal inference tends to analyze causal relationships from statistical
data [56], e.g., Differences in Differences (DID) [57], Granger
Causality [58], Propensity Score Matching (PSM) [59], Generalized
Propensity Score Matching (GPS) [60], Instrumental Variable [61],
and Regression Discontinuity Design [62]. Compared with the above
causal inference methods, DID is more suitable for panel data [63].
Specifically, we conduct the scientists into treatment and control
groups according to whether they have interdisciplinary behavior,
and the regression equation for DID can be written as,

Yit � β0 + β1treati + β2periodt + β3treati × periodt + εit (3)
where Yit is a measurement of the influence (citations) of scientist

i. treati is a dummy variable for group membership and εit is the error
term. If scientist i has interdisciplinary behavior, then scientist i
belongs to the treated group, treati = 1; otherwise, treati = 0.
periodt is a dummy variable for the period. Assume that the time

FIGURE 1
An example to calculate the interdisciplinary distance J(m = 3). The early careers’ discipline vector αearly and the later careers’ discipline vector αlater are
generated based on the early and later m papers. Finally, the interdisciplinary distance J is measured according to the complementary cosine similarity
between discipline vectors.
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for the interdisciplinary is t, and the observe time ti < t (|t − ti| < = 2),
periodt = 0, otherwise periodt = 1. The composite variable treati ×
periodt is a dummy variable, indicating whether the individual of the
treated group is in the treated period, and the coefficient β3 represents
the treated effects for interdisciplinary behavior. It is worth noting that
DID requires the treated and control group to be entirely in accord
with the parallel trend assumption before the treatment, i.e., the
influence of scientists should increase at the same rate, whatever in
treated and control groups. In addition, even if the parallel trend
assumption is satisfied, it is still necessary to control features that may
affect scientists’ influence, e.g., the career years of the scientist, the
number of cooperation scientists, and the total number of
publications. Thus, this work investigates the relationship between
interdisciplinary behavior and scientists’ influence by utilizing PSM-
DID. PSM transforms multi-dimensional features into one-
dimensional propensity scores through a functional relationship,
and matches individuals in the treatment group with the control
group according to the propensity score. Specifically, we select four
observable features (covariates) for 2 years before and after scientists’
interdisciplinary behavior: 1) the total number of publications; 2) the
total number of disciplines of the scientist; 3) the career ages of the
scientist; 4) the number of collaborators in each paper. Then, we
calculate the propensity score of each scientist and conduct the match.
The result of PSM provides supporting evidence for the parallel trend
assumption. Finally, we consider citations and whether the scientist
has interdisciplinary behavior as dependent and independent
variables, respectively, and evaluate the treated effects of the treated
group by utilizing DID.

Another goal of this work is to quantify the causal relationship
between interdisciplinary distance and scientists’ influence, i.e., the
treated effect of continuous variables. However, the usual causal
inference models allow only binary variables, i.e., the treated
variable = 0 (1) in the control (treated). Thus, we consider utilizing

the GPSM to evaluate the treated effect of interdisciplinary distance.
GPSM is an extension of PSM and is widely used in many different
fields, such as economics [64], education [65], and medicine [66].
Furthermore, compared with the PSM, GPSM inherits the core
concept and has similar covariate balancing properties. The most
significant advantage is that it breaks the PSM constraint that the
treated variable only allows binary variables. We consider the relative
citation growth rate in early and late careers as the quantification of
scientists’ influence (dependent variable). The independent variable is
the interdisciplinary distance, and covariates are consistent in PSM.

3 Results

3.1 Citation dynamic of interdisciplinary paper

Papers play an essential role in academic society, it is interesting to
investigate the influence caused by interdisciplinary behavior. To
investigate this, our work considers 2 years as the observed time
(ti) and 3 years as the citation period to explore the citations of
different types of interdisciplinary papers. Figure 2 compares the
evolution of citations for papers with different interdisciplinary
types. Compared with papers published in the large discipline
(Pl−l), papers published in the large across small discipline (Pl−s)
receive lower average citations (pink dot) in each interval.
However, the papers in the small across large discipline (Ps−l)
receive more average citations (pink dot) than that in the small
discipline (Ps−s). On the one hand, it may be caused by the
different citation dynamics in the inter-discipline and a single
discipline, i.e., interdisciplinary papers need more than 3 years to
reach peak citations. On the other hand, the large discipline cross to
the small discipline receives less recognition and attention, and peers
agree more with papers of the small cross to the large discipline.

FIGURE 2
The evolution of citations of papers within different interdisciplinary types. We classify papers as the large discipline (blue box), the large across the small
discipline (orange box), the small discipline (green box), and the small across large discipline (red box). The solid line and the pink dot in box represent the
median and average number of citations, respectively.
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In order to explore the underlying reasons for the different trends
in the dynamic of papers with different types of interdisciplinary
behaviors. We first investigate whether the interdisciplinary papers
presented different citation dynamics from others by changing the
citation period for papers. Figure 3 compares the citation period in
three and 8 years in different disciplinary types. Papers published
before 2008 are selected to avoid partial papers without 8 years citation
period. When the citation period extends from 3 years (Figure 3A) to
8 years (Figure 3B), the citation of papers in the large cross the small
discipline is less than that in the large disciplines, whatever three and
eight citation period. Furthermore, citations of papers in the small
cross the large discipline exhibit similar trends. This result indicates

that the short- and long-term influence of interdisciplinary papers is
similar to that of other papers, i.e., the increasing or decreasing of
citations for interdisciplinary papers is irrelevant to the citation
period. In particular, we further investigate the citation dynamics
of papers in different disciplinary types published before 2008 in each
year after publication. The average number of citation distribution is
almost the same in different disciplines in Figure 4. We adopt the
Z-test and Kolmogorov-Smirnov (K-S) test to examine distributions’
differences. Our null hypothesis is that the distribution of average
citations of interdisciplinary papers is different from that of single-
discipline papers. The result in Table 1 shows that P - value > 0.05,
whatever Pl−l Vs. Pl−s and Ps−l Vs. Ps−s, which refuses the null
hypothesis, and indicates that the citation dynamics of
interdisciplinary and single discipline are the same distribution. It
further indicates that interdisciplinary behavior will increase or
decrease the citations, but the citation dynamics for
interdisciplinary papers are similar to others.

One possible reason for the different trends in the citation of
different types of interdisciplinary papers is the different recognition
of scientific outputs. We analyze the citation sources for the different
types of interdisciplinary papers within 8 years after publication in
Figure 5. The disciplines with the most cited papers published by the
large discipline (Figure 5A) and the small discipline (Figure 5C) are the
large discipline (44%–46%) and small disciplines (41%–51%),
respectively. It indicates that papers without interdisciplinary
behavior have been widely recognized in self-discipline. Papers

FIGURE 3
The evolution of citations of papers within different interdisciplinary types. We compare the number of citations with three (A) and eight (B) years citation
period, and other elements are consistent with Figure 2.

FIGURE 4
The dynamic of citations of papers for different interdisciplinary
types. We select paper published before 2008, and calculate the average
number of citations for different interdisciplinary types, i.e., the large
discipline (blue line), the large across the small discipline (orange
line), the small discipline (green line), and the small across large discipline
(red line).

TABLE 1 The result of Z-test and K-S test.

Z-test K-S test

P(l − l) Vs. P(l − s) −0.96(0.34) 0.67(0.35)

P(s − l) Vs. P(s − s) 0.43(0.66) 0.66(0.38)
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published in Pl−s (Figure 5B) receive more citations in the same
interdisciplinary type (32%–36%), while papers in Ps−l (Figure 5D)
are citedmost in the small discipline (28%–33%). Compered Figure 5C
with Figure 5D, despite the proportion of citations in the small across

large discipline having decreased in the small disciplines, the
proportion is the highest in different disciplines, i.e., the initial
disciplines (the small disciplines) tend to accept the scientific
outputs in the small across large discipline.

FIGURE 5
The citations attribution for different interdisciplinary types. We select the papers published after 2008, and the vertical axis represent the years after
publish. The target disciplines are considered as the large discipline Pl−l (dark green column) across small discipline Pl−s (light green column), and the small Ps−s
(red column) across large discipline Ps−l (pink column). (A) The large discipline (Pl−l). (B) The large across small discipline Pl−s. (C) The small discipline Ps−s. (D)
The small across large discipline Ps−l.

FIGURE 6
The evolution of citations for scientists within different interdisciplinary types. We classify scientists as the large discipline (blue box), the large across the
small discipline (orange box), the small discipline (green box), and the small across large discipline (red box). The solid line and the pink dot in the box represent
the median and the average number of citations for scientists, respectively.

Frontiers in Physics frontiersin.org06

Fu et al. 10.3389/fphy.2023.1107446

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1107446


3.2 The effect of different interdisciplinary
types

We further explore the influence of interdisciplinary behavior on
scientists. Specifically, according to the interdisciplinary types and
attributing each paper to the first scientist, we can define an
interdisciplinary type for the scientist, including the large discipline
scientist (Sl−l), the large cross small discipline scientist (Sl−s), the small
discipline scientists (Ss−s), and the small cross large discipline
scientists (Ss−l).

Since the dynamic distribution of citations in interdisciplinary
papers is similar to that in others (Figure 4), we consider citations
received within 3 years after publication to measure the scientists’
influence. Figure 6 compares the citations of scientists in different
interdisciplinary types. In total periods, the influence of scientists in
the large across small discipline (Sl−s) is lower than that of scientists in
the large discipline (Sl−l) except in 2000. A different phenomenon is
that scientists in the small across large discipline (Ss−l) receive more
positive impacts from interdisciplinary behaviors. This finding
indicates that the risk of interdisciplinary behavior of large
disciplinary scientists is more significant than the rewards. In
contrast, scientists in small disciplines can enhance their influence
through interdisciplinary behavior, which benefits the sustainable
development of their careers.

Table 2 demonstrates the result of DID in the different
interdisciplinary types. As shown in Table 2, the interdisciplinary
behavior of scientists in Sl−s significantly reduces their influence,
especially in 2004, nearly reduced 2.6 citations. However, scientists in
Ss−l increase their influence on interdisciplinary behavior, and the most
significant increase occurred in 2016, with an increase of about
7.2 citations. In general, our results exhibit a causal perspective for
developing scientists’ careers, especially for scientists in the small discipline.

3.3 The effect of interdisciplinary distance

Interdisciplinary research is a tough career challenge for scientists,
i.e., the trade-off between the new research field and influence [67].
Thus, the scientist may balance the risks and benefits of
interdisciplinary behavior. To find out the “Sweet Spot” in the
transition, this work further explores the relationship between
interdisciplinary distance and scientists’ influence. Specifically, We
consider J as the interdisciplinary distance and use the growth of
citations to evaluate the scientists’ influence. The growth of citations is
defined as Gc = (Cafter − Cbefore)/Cbefore, where Cafter and Cafter is the
citations for scientists in early and later careers, respectively.

Figure 7 compares the relationship between inter-discipline
distance J and the growth of citations. We find that both long and
short inter-disciplinary distances limit scientists’ benefits and that only
appropriate interdisciplinary distances could enhance the influence of
scientists. Furthermore, the interdisciplinary also may introduce
negative influence, which displays a uniform distribution (inserted
figure in Figure 7), which indicates that inter-disciplinary behavior
may reduce the influence of scientists, whatever the interdisciplinary
distance. This phenomenon suggests that scientists need to bear the
risks through interdisciplinary behavior and turn an appropriate
interdisciplinary distance if they want to increase their influence.

We further investigate the underlying relationship between
interdisciplinary distance and scientists’ influence by utilizing GPSM.TA
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As shown in Figure 8, scientists’ influence increases have a non-
monotonic behavior: it increases for small inter-disciplinary distances
and decreases (i.e., J > 0.16) for large inter-disciplinary distances (i.e., J <
0.152). The result implies that interdisciplinary behavior is an effective
way to enhance scientists’ influence. Furthermore, there exists a “Sweet
spot” for the influence introduced by interdisciplinary behavior, that is,
the interdisciplinary distance is 0.16.

4 Conclusion and discussion

This work studies the underlying relationship between
interdisciplinary and influence. By introducing the concept of the
large and small disciplines, we first investigate the relationship

between interdisciplinary behavior and citations. The results show
that different types of interdisciplinary behaviors will have different
effects on the citations, i.e., the citations of papers from the large
discipline across the small discipline will decrease, and the opposite
trend in the small discipline. Then, we find that papers of the large
discipline across the small discipline have been high-cited in the same
interdisciplinary type papers, while peers in the small discipline will
widely accept the paper of the small across the large discipline. The
analysis of the relationship between interdisciplinary behavior and
scientists’ influence and the result of DID-PSM confirm this
phenomenon. The previous study also confirmed that
interdisciplinary research might have a high impact, but they may
encounter challenges in collaboration and more obstacles in peer
review [68]. Furthermore, the analysis of interdisciplinary distance
and scientists’ influence finds that interdisciplinary behavior will bring
risks, and there exists a “Sweet spot” for the influence introduced by
interdisciplinary behavior. It is important for scientists to choose the
appropriate interdisciplinary distance while undertaking the risks. The
short interdisciplinary distance may lead to a low impact caused by the
lack of novelty, and excessive interdisciplinary distance may lead
scientists to work in entirely unfamiliar disciplines and descend the
scientific influence. Furthermore, this work only considers the first
author, i.e., the credit of the paper attributes to the first author. With
the increase of the number of co-authors of each publication, the
scientific credit system is also facing the pressure of development
[69–71]. Our future work will find a more reasonable credit allocation
method to further reveal the potential influence of interdisciplinary
behavior. In general, causality is the focus of research in the future
academic network. Our research introduced causal inference into
practice in the academic field. This work analyzes the correlation
between interdisciplinary behavior and scientists’ influence and
reveals its potential impact mechanism by quantifying the causal
relationship among them, which provides a new perspective for
future related research in the academic field.

FIGURE 7
The distribution of citations’ growth for the interdisciplinary scientists. The blue dot isGc for each scientist. The insert picture shows the negative growth
for citations.

FIGURE 8
The evolution of treatment effect for GPSM. The blue line is the
growth of citations Gc, which is the same as Figure 7. The horizontal and
vertical axis represents the interdisciplinary distance and the growth of
citations, respectively.
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