95 research outputs found

    Identification and characterization of new mutations in mitochondrial cytochrome b that confer resistance to bifenazate and acequinocyl in the spider mite Tetranychus urticae

    Get PDF
    BACKGROUND In spider mites, mutations in the mitochondrial cytochrome b Qo pocket have been reported to confer resistance to the Qo inhibitors bifenazate and acequinocyl. In this study, we surveyed populations of the two‐spotted spider mite Tetranychus urticae for mutations in cytochrome b, linked newly discovered mutations with resistance and assessed potential pleiotropic fitness costs. RESULTS We identified two novel mutations in the Qo site: G132A (equivalent to G143A in fungi resistant to strobilurins) and G126S + A133T (previously reported to cause bifenazate and acequinocyl resistance in Panonychus citri ). Two T. urticae strains carrying G132A were highly resistant to bifenazate but not acequinocyl, whereas a strain with G126S + A133T displayed high levels of acequinocyl resistance, but only moderate levels of bifenazate resistance. Bifenazate and acequinocyl resistance were inherited maternally, providing strong evidence for the involvement of these mutations in the resistance phenotype. Near isogenic lines carrying G132A revealed several fitness penalties in T. urticae ; a lower net reproductive rate (R0), intrinsic rate of increase (rm) and finite rate of increase (LM); a higher doubling time (DT); and a more male‐biased sex ratio. CONCLUSIONS Several lines of evidence were provided to support the causal role of newly discovered cytochrome b mutations in bifenazate and acequinocyl resistance. Because of the fitness costs associated with the G132A mutation, resistant T. urticae populations might be less competitive in a bifenazate‐free environment, offering opportunities for resistance management. © 2019 Society of Chemical Industr

    Geographical distribution and molecular insights into abamectin and milbemectin cross-resistance in European field populations of Tetranychus urticae

    Get PDF
    BACKGROUND Milbemectin and abamectin are frequently used to control the spider mite Tetranychus urticae. The development of abamectin resistance in this major pest has become an increasing problem worldwide, potentially compromising the use of milbemectin. In this study, a large collection of European field populations was screened for milbemectin and abamectin resistance, and both target-site and metabolic (cross-)resistance mechanisms were investigated. RESULTS High to very high levels of abamectin resistance were found in one third of all populations, while milbemectin resistance levels were low for most populations. The occurrence of well-known target-site resistance mutations in glutamate-gated chloride channels (G314D in GluCl1 and G326E in GluCl3) was documented in the most resistant populations. However, a new mutation, I321T in GluCl3, was also uncovered in three resistant populations, while a V327G and L329F mutation was found in GluCl3 of one resistant population. A differential gene-expression analysis revealed the overexpression of detoxification genes, more specifically cytochrome P450 monooxygenase (P450) and UDP-glycosyltransferase (UGT) genes. Multiple UGTs were functionally expressed, and their capability to glycosylate abamectin and milbemectin, was tested and confirmed. CONCLUSIONS We found a clear correlation between abamectin and milbemectin resistance in European T. urticae populations, but as milbemectin resistance levels were low, the observed cross-resistance is probably not of operational importance. The presence of target-site resistance mutations in GluCl genes was confirmed in most but not all resistant populations. Gene-expression analysis and functional characterization of P450s and UGTs suggests that also metabolic abamectin resistance mechanisms are common in European T. urticae populations

    Untangling a Gordian knot : the role of a GluCl3 I321T mutation in abamectin resistance in Tetranychus urticae

    Get PDF
    BACKGROUND: The cys-loop ligand-gated ion channels, including the glutamate-gated chloride channel (GluCl) and GABA-gated chloride channel (Rdl) are important targets for drugs and pesticides. The macrocyclic lactone abamectin primarily targets GluCl and is commonly used to control the spider mite Tetranychus urticae, an economically important crop pest. However, abamectin resistance has been reported for multiple T. urticae populations worldwide, and in several cases was associated with the mutations G314D in GluCl1 and G326E in GluCl3. Recently, an additional I321T mutation in GluCl3 was identified in several abamectin resistant T. urticae field populations. Here, we aim to functionally validate this mutation and determine its phenotypic strength. RESULTS: The GluCl3 I321T mutation was introgressed into a T. urticae susceptible background by marker-assisted backcrossing, revealing contrasting results in phenotypic strength, ranging from almost none to 50-fold. Next, we used CRISPR-Cas9 to introduce I321T, G314D and G326E in the orthologous Drosophila GluCl. Genome modified flies expressing GluCl I321T were threefold less susceptible to abamectin, while CRISPRed GluCl G314D and G326E flies were lethal. Last, functional analysis in Xenopus oocytes revealed that the I321T mutation might reduce GluCl3 sensitivity to abamectin, but also suggested that all three T. urticae Rdls are affected by abamectin. CONCLUSION: Three different techniques were used to characterize the role of I321T in GluCl3 in abamectin resistance and, combining all results, our analysis suggests that the I321T mutation has a complex role in abamectin resistance. Given the reported subtle effect, additional synergistic factors in resistance warrant more investigation

    Differential Expression Analysis of Olfactory Genes Based on a Combination of Sequencing Platforms and Behavioral Investigations in Aphidius gifuensis

    Get PDF
    Aphidius gifuensis Ashmead is a dominant endoparasitoid of aphids, such as Myzus persicae and Sitobion avenae, and plays an important role in controlling aphids in various habitats, including tobacco plants and wheat in China. A. gifuensis has been successfully applied for the biological control of aphids, especially M. persicae, in green houses and fields in China. The corresponding parasites, as well as its mate-searching behaviors, are subjects of considerable interest. Previous A. gifuensis transcriptome studies have relied on short-read next-generation sequencing (NGS), and the vast majority of the resulting isotigs do not represent full-length cDNA. Here, we employed a combination of NGS and single-molecule real-time (SMRT) sequencing of virgin females (VFs), mated females (MFs), virgin males (VMs), and mated males (MMs) to comprehensively study the A. gifuensis transcriptome. Behavioral responses to the aphid alarm pheromone (E-β-farnesene, EBF) as well as to A. gifuensis of the opposite sex were also studied. VMs were found to be attracted by female wasps and MFs were repelled by male wasps, whereas MMs and VFs did not respond to the opposite sex. In addition, VFs, MFs, and MMs were attracted by EBF, while VMs did not respond. According to these results, we performed a personalized differential gene expression analysis of olfactory gene sets (66 odorant receptors, 25 inotropic receptors, 16 odorant-binding proteins, and 12 chemosensory proteins) in virgin and mated A. gifuensis of both sexes, and identified 13 candidate genes whose expression levels were highly consistent with behavioral test results, suggesting potential functions for these genes in pheromone perception

    Breastmilk microbiome changes associated with lactational mastitis and treatment with dandelion extract

    Get PDF
    IntroductionDandelion (Pugongying) is one of the most frequently used Chinese herbs for treating lactational mastitis (LM). Pugongying granules, a patented medication primarily comprised of dandelion extract, have been approved by CFDA for LM treatment in China. The aims of this study were to investigate the etiology of LM and the mechanism by which Pugongying granules decrease LM symptoms, with a particular focus on the microbial communities found in breastmilk.MethodsParticipants were recruited from a previously performed randomized controlled trial (Identifier: NCT03756324, ClinicalTrials.gov). Between 2019 and 2020, women diagnosed with unilateral LM at the Beijing University of Chinese Medicine Third Affiliated Hospital were enrolled. In total, 42 paired breastmilk samples from the healthy and affected breasts of the participants were collected. Additionally, 37 paired pre- and post-treatment breastmilk samples from the affected breast were collected from women who received a 3-day course of either Pugongying granules (20 women) or cefdinir (17 women). Clinical outcomes [e.g., body temperature, visual analogue scale (VAS) score for breast pain, the percentage of neutrophils (NE%)] were analyzed pre- and post-treatment, and the breastmilk samples were subjected to 16S rRNA gene sequencing to analyze the alpha and beta diversities and identify significant bacteria. Finally, the relationship between microorganisms and clinical outcomes was analyzed.ResultsThere was no significant difference in fever and pain between the Pugongying group and cefdinir group. The most prevalent bacterial genera in breastmilk were Streptococcus and Staphylococcus. Compared to healthy breastmilk, microbial diversity was reduced in affected breastmilk, and there was a higher relative abundance of Streptococcus. After Pugongying treatment, there was an increase in microbial diversity with significantly higher abundance of Corynebacterium. A negative correlation was found between Corynebacterium, VAS score, and NE%. Treatment with cefdinir did not affect microbial diversity. Taken together, our results show a correlation between LM and reduced microbial diversity, as well as an increased abundance of Streptococcus in affected breastmilk.ConclusionPugongying granules enhanced microbial diversity in breastmilk samples. Given the substantial variation in individual microbiomes, identifying specific species of Streptococcus and Corynebacterium associated with LM may provide additional insight into LM pathogenesis and treatment

    Small RNA combination therapy for lung cancer

    Get PDF
    MicroRNAs (miRNAs) and siRNAs have enormous potential as cancer therapeutics, but their effective delivery to most solid tumors has been difficult. Here, we show that a new lung-targeting nanoparticle is capable of delivering miRNA mimics and siRNAs to lung adenocarcinoma cells in vitro and to tumors in a genetically engineered mouse model of lung cancer based on activation of oncogenic Kirsten rat sarcoma viral oncogene homolog (Kras) and loss of p53 function. Therapeutic delivery of miR-34a, a p53-regulated tumor suppressor miRNA, restored miR-34a levels in lung tumors, specifically down-regulated miR-34a target genes, and slowed tumor growth. The delivery of siRNAs targeting Kras reduced Kras gene expression and MAPK signaling, increased apoptosis, and inhibited tumor growth. The combination of miR-34a and siRNA targeting Kras improved therapeutic responses over those observed with either small RNA alone, leading to tumor regression. Furthermore, nanoparticle-mediated small RNA delivery plus conventional, cisplatin-based chemotherapy prolonged survival in this model compared with chemotherapy alone. These findings demonstrate that RNA combination therapy is possible in an autochthonous model of lung cancer and provide preclinical support for the use of small RNA therapies in patients who have cancer.National Cancer Institute (U.S.) (Cancer Center Support (Core) Grant P30-CA14051)National Institutes of Health (U.S.) (Grant 2-PO1-CA42063)National Institutes of Health (U.S.) (Grant RO1-EB000244)National Institutes of Health (U.S.) (Grant RO1-CA115527)National Institutes of Health (U.S.) (Grant RO1-CA132091)National Cancer Institute (U.S.) (1K99CA169512)American Association for Cancer Research (Fellowship)Leukemia & Lymphoma Society of America (Fellowship)National Science Foundation (U.S.). Graduate Research Fellowship ProgramMassachusetts Institute of Technology. Presidential FellowshipUnited States. Dept. of Defense (National Defense Science and Engineering Graduate Fellowship

    An Experimental Study on the Establishment of Pulmonary Hypertension Model in Rats induced by Monocrotaline

    Get PDF
    Pulmonary hypertension is called PH for short. It is caused by the pulmonary artery vascular disease leading to pulmonary vascular resistance, and the increase right lung compartment load, which resulting in weakening or even collapse of the right ventricular function. The establishment of rat PH model under the action of monocrotaline is a repeatable, simple and accessible operation technique, which has been widely used in the treatment of pulmonary hypertension. This paper discusses the principle and properties of the PH model on rats under the monocrotaline action

    CRISPR-mediated direct mutation of cancer genes in the mouse liver

    Get PDF
    The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem (ES) cells1. Here we describe a new method of cancer model generation using the CRISPR/Cas system in vivo in wild-type mice. We have used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs)2–4 to the liver and directly target the tumor suppressor genes Pten5 and p536, alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre-LoxP technology7, 8. Simultaneous targeting of Pten and p53 induced liver tumors that mimicked those caused by Cre-loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumor tissue revealed insertion or deletion (indel) mutations of the tumor suppressor genes, including bi-allelic mutations of both Pten and p53 in tumors. Furthermore, co-injection of Cas9 plasmids harboring sgRNAs targeting the β-Catenin gene (Ctnnb1) and a single-stranded DNA (ssDNA) oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of β-Catenin. This study demonstrates the feasibility of direct mutation of tumor suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Molecular and genetic dissection of macrocyclic lactone resistance in the spider mite Tetranychus urticae

    No full text
    corecore