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23 Abstract

24 BACKGROUND: In spider mites, mutations in the mitochondrial cytochrome b Q0 pocket have been 

25 reported to confer resistance to the Q0 inhibitors bifenazate and acequinocyl. In this study we surveyed 

26 populations of the two-spotted spider mite Tetranychus urticae for mutations in cytochrome b, linked newly 

27 discovered mutations with resistance and assessed potential pleiotropic fitness costs. 

28 RESULTS: We identified two novel mutations in the Q0 site: G132A (equivalent to G143A in fungi 

29 resistant to strobilurins) and G126S + A133T (previously reported in Panonychus citri to cause bifenazate 

30 and acequinocyl resistance).  Two T. urticae strains carrying G132A were highly resistant to bifenazate but 

31 not acequinocyl, while a strain with G126S + A133T displayed high levels of acequinocyl resistance, but 

32 only moderate levels of bifenazate resistance. Bifenazate and acequinocyl resistance inherited maternally, 

33 providing strong evidence for the involvement of these mutations in the resistance phenotype. Near isogenic 

34 lines carrying G132A revealed several fitness penalties in T. urticae: a lower net reproductive rate (R0), the 

35 intrinsic rate of increase (rm), and the finite rate of increase (LM), a higher doubling time (DT), and a more 

36 male biased sex ratio.

37 CONCLUSIONS: Several lines of evidence were provided to support the causal role of newly discovered 

38 cytochrome b mutations in bifenazate and acequinocyl resistance. Due to the fitness costs associated with 

39 the G132A mutation, resistant T. urticae populations might be less competitive in a bifenazate free 

40 environment, offering opportunities for resistance management. 

41

42 Keywords: spider mites; complex III inhibitor; cytochrome b; mutation; cross-resistance; fitness cost
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46 1. INTRODUCTION

47 The spider mite Tetranychus urticae Koch (Arthropoda: Acari: Tetranychidae) is an important 

48 cosmopolitan pest damaging many agricultural crops. Frequent acaricide applications are needed 

49 to control this species which inevitably led to the development of resistance. This species is 

50 considered as one of the most pesticide resistant arthropods based on the number of active 

51 ingredients to which resistance has been reported.1, 2 Pesticide resistance evolves via two main 

52 mechanisms: (1) toxicodynamic changes, such as the reduction in the sensitivity or availability of 

53 the target-site due to point mutation(s), gene knock-out or amplification, (2) toxicokinetic changes 

54 that reduce the amount of pesticides that reaches the target-site through changes in exposure, 

55 penetration, transportation, metabolism and excretion.3, 4 Resistance mechanisms are often costly, 

56 for example point mutations in essential target genes can convey pleiotropic effects and affect 

57 other phenotypic traits in addition to pesticide resistance.5-7 Reproduction, dispersal, generation 

58 time, and longevity have been reported to be negatively affected by target-site resistance 

59 mutations.8-12 Also, for the spider mite T. urticae, fitness costs have been reported after marker 

60 assisted back-crossing, but not for all resistance mutations.11 

61 Although environmentally friendly methods such as biological control increase in importance, 

62 especially in greenhouse crops,13, 14 spider mites as T. urticae are still mainly controlled by 

63 acaricide applications.15 The hydrazine carbazate acaricide bifenazate is one of the most recently 

64 developed and frequently used acaricides with excellent selectivity to all life stages of Tetranychus 

65 spp. and Panonychus spp..16, 17 Bifenazate was first classified as a neurotoxin,18 but later studies 

66 revealed a mitochondrial mode of action via inhibition of electron transport.12, 19 Bifenazate 

67 resistance was shown to inherit maternally and high levels of resistance were tightly linked with 
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68 mutation(s) at highly conserved regions (the cd1-helix and ef-helix) of the cytochrome b Q0 site 

69 of the mitochondrial complex III (bc1 complex, ubihydroquinone: cytochrome c oxidoreductase 

70 enzyme complex).

71 The mitochondrial complex III is an essential enzyme complex in the electron transport 

72 chain and plays a critical role in the biochemical generation of adenosine triphosphate (ATP) via 

73 oxidative phosphorylation. The catalytic core of this enzyme complex is composed of three 

74 subunits in eukaryotes which are cytochrome b, Rieske iron–sulphur protein (ISP) and cytochrome 

75 c1 proteins. Cytochrome b is encoded by the mitochondrial genome while the other subunits are 

76 encoded by the nuclear genome. Electrons are transported from low-potential ubiquinol to a higher 

77 potential cytochrome c via the Q-cycle pathway.20, 21 This pathway requires two separate quinone-

78 binding sites: the quinol oxidation site (Q0 site) and the quinone reduction site (QI site). These two 

79 sites are located on opposite sides of the membrane and linked by a transmembrane electron-

80 transfer pathway. Pesticides that inhibit the normal functioning of Q0 sites have been developed 

81 from different chemical classes including, in addition to the carbazate bifenazate, the 2-

82 hydroxynaphthoquinones (HONQs) and the b-methoxyacrylates (MOAs) with the strobilurins as 

83 a commercially successful family of potent fungicides.22-24 Acequinocyl is the only 

84 commercialized acaricide of the naphthoquinone analogue group25 and is commonly used against 

85 all stages of T. urticae and other spider mite species.18 Cross-resistance between bifenazate and 

86 acequinocyl associated with cytochrome b mutations has been reported from T. urticae and 

87 Panonychus citri populations.19, 24 The strobilurin fungicides were originally isolated from the 

88 mycelium of the basidiomycete Strobilurus tenacellus strain No. 2160226 and are currently 

89 considered as one of the most important classes of agricultural fungicides.27, 28 The first field 
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90 resistance to strobilurin fungicides was reported in wheat powdery mildew populations in northern 

91 Germany in 1998.29 Later studies revealed that resistance to this group of fungicide in plant 

92 pathogenic fungi is most often due to point mutation(s) in the Q0 region of mitochondrial 

93 cytochrome b.30-32

94 In this study we discovered a G132A mutation in cytochrome b of T. urticae, equivalent to 

95 G143A in fungi, which has been reported as the most frequent mutation associated with strobilurin 

96 resistance.30, 33-36 During a survey investigating the frequency of G132A in T. urticae field strains, 

97 we also uncovered for the first time the combination of G126S + A133T in T. urticae,  previously 

98 reported in the spider mite P. citri.24 We provide strong evidence of the causal role of these 

99 resistance mutations by revealing maternal inheritance and determined the strength of the 

100 phenotype by introgression of the mitochondrial haplotype in a susceptible genomic background. 

101 Last, we used the generated isogenic lines to assess potential fitness costs associated with G132A 

102 in T. urticae.

103 2. Materials and Methods

104 2.1 Chemicals and mite strains

105 Commercial formulations of the mitochondrial complex III electron transport inhibitors bifenazate 

106 (Floramite® 240 g litre−1 SC) and acequinocyl (Cantack ® 150 g litre−1 SC) were purchased from 

107 Intergrow (Aalter, Belgium). All chemicals were analytical grade and purchased from Sigma-

108 Aldrich, unless stated otherwise. The JP-R strain37 and the laboratory susceptible Wasatch strain38 

109 were previously described. In addition, twenty-three field strains were collected from different 

110 geographical areas across Europe between 2016 and 2019 for resistance mutation screening (Table 
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111 1). All mites were reared on kidney bean plants Phaseolus vulgaris L. cv. ‘‘Speedy’’ or ‘Prelude’ 

112 at 25 ± 1°C, 60% RH, and 16/8 h (L/D) photoperiod.

113 2.2 Survey of cytochrome b variants 

114 DNA extraction and PCR amplification of cytochrome b was performed as described by Van 

115 Leeuwen et al..12 Briefly, approximately 200 adult females were collected and homogenized in 

116 800 μL SDS buffer (200mM Tris-HCl, 400 mM NaCl, 10 mM EDTA, 2% SDS at pH = 8.3) 

117 followed by phenol-chloroform extraction. For single mite DNA extraction, a single adult female 

118 was homogenized by hand in 20 µl mixture of STE buffer (100 mM NaCl, 10 mM Tris-HCl, 1 

119 mM EDTA, pH 8.0) and proteinase K (10 mg/ml, 2 ml) in a 1.5 ml Eppendorf tube. Then, the 

120 mixture was incubated at 37°C for 30 min followed by 95°C for 5 minutes.12 PCR was performed 

121 using the Expand Long Range PCR kit (Roche) and the primers Cytbdia2F (5’-

122 TTAAGAACTCCTAAAACTTTTCGTTC) and Cytbdia2R (5’-

123 GAAACAAAAATTATTATTCCC-CAAC). PCR products were purified with a Cycle- Pure Kit 

124 (E.Z.N.A.TM) and sequenced with the original PCR primers and four internal sequencing primers 

125 (cytbWTF, 5’-CGGAATAATTTTACAAATAACTCATGC; cytbWTR, 5’-

126 TGGTACAGATCGTAGAATTGCG; PEWYF1, 5’-AAAGGCTCATCTAACCAAATAGG; 

127 PEWYR2, 5’-AATGAAATTTCTGTAAAAGGG-TATTC).12 Sequence data were analyzed with 

128 BioEdit software.39 Sequences have been submitted to the NCBI repository (Table 1).

129 2.3 Generation of isofemale and introgressed lines

130 Isofemale lines were established from the FS1 and FS8 strains and were labeled as iso-FS1 and 

131 iso-FS8, respectively. Approximately 500 mated female mites were transferred to detached bean 

132 leaves on wet cotton wool in petri-dishes and were sprayed with 200 mg/L bifenazate. Five Petri-
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133 dishes were prepared per strain. After 72 h, ten alive females were selected randomly from the 

134 sprayed arenas and transferred to 9 cm2 square bean leaf discs individually. Mites were allowed to 

135 lay eggs for 3-4 days. DNA of each single female was extracted as described above. Progeny of a 

136 single female with the G132A (iso-FS1) and G126S + A133T (iso-FS8) mutations was used to 

137 create the isofemale lines. Introgressed lines were established using the back-crossing methods 

138 described by Bajda et al. 2017.40, 41 Briefly, JP-R and iso-FS8 virgin females were crossed with 

139 susceptible Wasatch males. A virgin F1 female was back-crossed to Wasatch males, and the back-

140 crossing was repeated seven times. After back-crossing, mites were transferred to full bean plants 

141 and were allowed to expand their population size for toxicity and fitness costs experiments. 

142 Introgressed lines that carry G132A and G126S + A133T are labeled as JP-R-BC (1-3) and iso-

143 FS8-BC (1-3), respectively.

144 2.4 Toxicity bioassays

145 To determine bifenazate and acequinocyl toxicity, dose-response bioassays were conducted with 

146 female adult mites as described by Van Leeuwen et al..42 Briefly, we tested a minimum of five 

147 concentrations in four replicates. For each replicate 20-35 adult females were transferred to 9 cm2 

148 bean leaf discs on wet cotton wool. Arenas were sprayed with 1 ml of acaricide solution or 

149 deionized water (as control) at 1 bar pressure in a Potter spray tower resulting in 2 mg aqueous 

150 deposit per cm2. Mortality was recorded after 24 h. The LC50-values and their 95% confidence 

151 limits were calculated from probit regressions using the POLO-Plus software (LeOra Software, 

152 2006).

153 2.5 Reciprocal crosses
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154 To elucidate the mode of inheritance of bifenazate and acequinocyl resistance, reciprocal crosses 

155 were set up between the JP-R (G132A), iso-FS1(G132A) and iso-FS8 (G126S + A133T) resistant 

156 lines and the susceptible Wasatch strain. To create hybrid F1 females, approximately 80 

157 teleiochrysalid females and 100 adult males were placed on detached bean leaves on wet cotton 

158 wool and were allowed to mate. After two days, females were collected and transferred daily to a 

159 fresh 9 cm2 square bean leaf disc and allowed to lay eggs. F1 adult females were used for toxicity 

160 bioassays. The degree of dominance (D) was calculated with the Stone (1968)43 formula: D = (2X2 

161 – X1 – X3)/ (X1 – X3), where X1 = log10 LC50 of the resistant strain, X3 = log10 LC50 of the 

162 susceptible strain and X2 = log10 LC50 of the F1 females obtained from the reciprocal cross. 

163 2.6 Fitness cost of G132A 

164 To explore potential fitness costs associated with the G132A mutation, demographic experiments 

165 were conducted with the three independent JP-R back-crossed lines in comparison with the 

166 parental Wasatch line as control. 

167 Developmental time, immature stage survivorship (ISS), and sex ratio 

168 From each introgressed line and the Wasatch control, 100 females were randomly collected from 

169 stock cultures and transferred to a detached bean leaf on wet cotton in three replicates. Females 

170 were allowed to lay eggs for 4-5 h and the numbers of eggs were recorded. After eight days, the 

171 development of the offspring was followed every 12h, and the eclosion time and sex of the adults 

172 were recorded.

173 Oviposition and adult longevity

174 From the three introgressed lines and the Wasatch control, 40 female teleiochrysalids were placed 

175 individually with an adult male on a 2 cm2 leaf disk (in total 4 × 40 = 160 leaf disks each with a 
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176 mite couple). Every 12 h, all disk arenas were checked for female oviposition and death. Every 24 

177 h each mite couple was transferred to a fresh leaf disk until the female died. Pre-oviposition, 

178 oviposition and post-oviposition periods were determined as the time spanning between adult 

179 female emergence and the first egg, the time between the first and last day of oviposition, and the 

180 day when no eggs were deposited until her death, respectively.

181 2.7 Statistical analysis

182 Statistical analysis was conducted within the R framework [R Core Team (2014), version 3.1.2]44 

183 for all data. Normality of variances was tested using a Shapiro-Wilk test. A generalized linear 

184 model with a negative binomial error distribution was used to analyse the data of female longevity, 

185 pre-oviposition period, oviposition period, post-oviposition period and the number of eggs. Sex 

186 ratio data was analysed using a generalized linear model with a binomial error distribution. A 

187 general linear model was used to analyse ISS data that were normally distributed. Differences 

188 between the introgressed lines were determined using the Tukey’s HSD test at 95% confidence 

189 level.  Life table analysis was performed based on the lifetable R script. 45 The intrinsic rate of 

190 increase (rm) was calculated with the equation  e−rmlxmx=1 where lx is the proportion of ∑
 Ωg

 x = x0  
 

191 females surviving to age x and mx is the mean number of female progeny per adult female at age 

192 x. The net reproductive rate or mean number of daughters produced per female was calculated 

193 from R0= lxmx and the mean generation time from T= . The finite rate of increase ∑
 Ωg

 x = x0  
 

 ln (R0) 

 rm

194 and doubling time were inferred from the equations LM=erm and DT= , respectively. Variance 
  ln2  

 rm

195 for the life table (LT)  parameters was estimated with Jackknife resampling method.46 As the 

196 Jackknife method is an asymptotic procedure that is sensitive to a highly skewed distribution,47 
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197 the symmetry of our dataset was measured with the function skewness from package moments 

198 prior to the final analysis.48 Subsequently, mean Jackknife values and their standard errors (SE) 

199 were calculated for the five LT parameters.49 Mean jackknife values for lines carrying mutations 

200 were then compared to Wasatch using Dunnett’s test (adjusted p-value <0.05).

201

202 3. Results

203 3.1 Cytochrome b genotypes of JP-R and the field strains

204 During a cross-resistant screen of the Japanese JP-R strain selected for cyenopyrafen resistance,37 

205 we found strong bifenazate resistance, and therefore sequenced the complete cytochrome b gene. 

206 Aligning the cytochrome b sequences of JP-R against that of the susceptible strains Wasatch and 

207 GSS revealed a novel amino acid substitution (G132A) (Table 1 and Figure 1). To explore the 

208 spread of this mutation in Europe, several field-collected strains were screened (Table 1). We 

209 found four mutations in the conserved cd1 and ef-helix of the Q0 pocket of cytochrome b of 

210 mitochondrial complex III (G126S, G132A, A133T and P262T). The novel G132A uncovered in 

211 JP-R was also identified in FS1, a strain from the Netherlands. In addition, a novel mutation 

212 combination (G126S + A133T) was identified in strain FS8 from the UK. This combination of 

213 mutations has already been reported from P. citri, but was so far never encountered in T. urticae 

214
24 (Table 1 and Figure 1). Last, the well characterized P262T was found in a population from 

215 strawberry in the UK. Additional substitutions were also found in non-conserved regions. The 

216 G126S mutation was found by itself in five strains collected from the Netherlands and the UK 

217 (Table1 and Figure 1), but whether the mutation alone confers resistance remains to be 

218 investigated.
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219 3.2 Resistance to bifenazate and acequinocyl

220 Results of all toxicity tests are listed in Table 2. The JP-R and FS1 strain that carry the G132A 

221 mutation were resistant to bifenazate (LC50 >150 mg/L), but not to acequinocyl. In contrast, the 

222 FS8 strain with the G126S + A133T haplotype showed high levels of acequinocyl resistance (LC50 

223 > 600 mg/L), and only very moderate resistance to bifenazate (Table 2). The levels of resistance 

224 between parental and introgressed lines were comparable across all independent replicates for 

225 G132A (Table 2), strongly suggesting that the cytochrome b mutation alone completely determines 

226 the resistance phenotype. For the G126S + A133T haplotype, resistance ratios for acequinocyl 

227 were two-fold lower after introgression, but LC50 values were still very high (Table 2). This 

228 suggests a strong effect of the combination of these mutations in acequinocyl resistance, but also 

229 implies that additional factors might be involved in the very high resistance of the non-introgressed 

230 strain iso-FS8.

231 3.3 Mode of inheritance of bifenazate and acequinocyl resistance

232 Reciprocal crosses revealed a complete maternal inheritance of bifenazate resistance in the G132A 

233 lines (Table 3, Figure 2), linking the mutation to the phenotype. The limited bifenazate resistance 

234 observed in iso-FS8 with the G126S + A133T haplotype also inherited completely maternal. There 

235 was a very strong maternal effect in the inheritance pattern of acequinocyl resistance in the 

236 reciprocal cross of iso-FS8 × Wasatch. In contrast, the very low resistance to acequinocyl in 

237 G132A lines did not inherit maternally (Table 3, Figure 2), indicating that G132A does not confer 

238 acequinocyl resistance. The LC50 values and dominance levels for all reciprocal crosses are 

239 specified in Table 3. 

240 3.4 Fitness costs
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241 Adult males and females of Wasatch emerged earlier than the introgressed lines JP-R-BC (1-3) 

242 (female: df = 3, F= 11.12, P < 0.001 and male: df= 3, F= 7.29, P < 0.001) (Supplemental Figure 1 

243 and Figure 3). Significant differences were observed between the three introgressed resistant lines 

244 JP-R-BC and the bifenazate susceptible strain Wasatch in terms of ISS (F = 4.13; df = 3, P = 

245 0.015), sex-ratio (χ2 = 9.30; df = 3; P = 0.023), longevity (χ2 = 17.76; df = 3; P < 0. 001), 

246 oviposition period (χ2 = 17.62; df = 3; P < 0. 001), total number of eggs laid per female (χ2 = 

247 12.61; df = 3; P = 0.005), and post-oviposition (χ2 = 7.97; df = 3; P = 0.46), but not pre-oviposition 

248 period (χ2 = 0.12; df = 3; P = 0.989) (Figure 3). 

249 Fertility life table parameters

250 All LT parameters, net reproductive rate (R0), the intrinsic rate of increase (rm), the finite rate of 

251 increase (LM), mean generation time (T) and the doubling time (DT) of the three introgressed lines 

252 carrying resistance mutations JP-R-BC (1-3) and Wasatch, are summarized in Table 4. All three 

253 introgressed lines of JP-R showed significantly smaller values for R0, rm and LM and significantly 

254 longer DT compared with their congenic line, Wasatch (Table 4 and Figure 4). No significant 

255 difference was found in T.

256 4. Discussion

257 Because of its excellent efficacy and safety toward biological control agents such as predatory 

258 mites,15, 16, 50 bifenazate has been frequently used worldwide. Soon after its introduction in the EU, 

259 resistance was reported in T. urticae populations from greenhouse roses in the Netherlands.12 

260 Surprisingly, bifenazate resistance inherits maternally and investigation of resistance mechanisms 

261 lead to the discovery of a mitochondrial mode of action,12 instead of the earlier proposed 

262 interaction with GABA gated chloride channels.51, 52 Mitochondrial genome sequencing revealed 
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263 mutations at conserved sites in the mitochondrial cytochrome b gene, suggesting that bifenazate 

264 acts as a QO inhibitor.12, 19, 53 In spider mites, reciprocal genetic crosses between populations can 

265 be easily conducted, and should thus be the standard in validating the role of specific mutations in 

266 cytochrome b in QoI resistance. As cytochrome b is encoded by the mitochondrial genome, 

267 maternal inheritance is uniquely associated with these resistance conferring mutations. In addition, 

268 for a number of cytochrome b mutations, repeated back-crossing to a susceptible line has 

269 confirmed the very potent resistant phenotype in bifenazate resistance.40 Over the years, a number 

270 of mutations conferring bifenazate and acequinocyl resistance have been validated by revealing a 

271 maternal inheritance, both in T. urticae as P. citri populations (Figure 1). Although a number of 

272 other mutations has been reported, formal evidence of their contribution to bifenazate resistance is 

273 still lacking.54 The same is true for G126S, which was initially reported in combination with other 

274 cd1 helix mutations, but the mutation alone has never been validated to confer a resistant 

275 phenotype, despite a recent report.54 This is in contrast with mutations in (or close to) the ef helix, 

276 where P262T and I256V alone confer bifenazate and acequinocyl resistance respectively (Figure 

277 1).12, 55

278 In this study, we report for the first time a single mutation in the cd1-helix, G132A, that confers 

279 resistance to bifenazate. The mutation was uncovered after a cross-resistance screen of JP-R,37 a 

280 strain of Japanese origin, and was subsequently also detected in a Dutch field strain, FS1. Both 

281 lines harboring the G132A mutation, as well as back-crossed lines, displayed similar LC50’s and 

282 RR and resistance inherited perfectly maternal. This strongly validates the role of the G132A 

283 mutation in bifenazate resistance. However, the mutation did not confer acequinocyl cross-

284 resistance. Bifenazate resistance levels of 30-fold with LC50 values of 150-200 mg/L are very 
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285 significant in the light of field rate (e.g. Floramite at 96 mg active ingredient/L in EU) and could 

286 cause field failure, but nevertheless are much lower than those previously reported in the cd1 helix 

287 (LC50s > 10,000).12, 19 This suggests that a combination of mutations is needed to attain these very 

288 high resistance levels.  Interestingly, this mutation is the main resistance factor in pathogenic fungi 

289 resistant to strobilurins, which are classified as MOAs and Q0I inhibitor fungicides,22, 23, 56, 57, 

290 providing a strong example of convergent evolution across kingdoms. Screening of field-collected 

291 European T. urticae populations also led to the discovery of another novel combination of 

292 mutations: G126S + A133T. This Qo pocket haplotype is associated with high levels of 

293 acequinocyl and bifenazate resistance in P. citri.24 In our study, the combination of G126S and 

294 A133T in T. urticae conferred only moderate levels of resistance to bifenazate but high resistance 

295 to acequinocyl. It is surprising that this combination of substitutions confers such different levels 

296 of bifenazate resistance in P. citri and T. urticae, especially because the resistant phenotype 

297 inherited maternally in both species, and additional (nuclear) factors in resistance can thus be ruled 

298 out. For G132A, it is clear that bifenazate must be the most relevant selective force in T. urticae 

299 field populations, as it does not confer acequinocyl resistance.  The opposite is likely true for 

300 G126S + A133T, as the effect seems to be much more pronounced on acequinocyl toxicity, and 

301 hence it is tempting to speculate that frequent acequinocyl use lies at the basis of resistance 

302 development.

303 After repeated back-crossing to the susceptible Wasatch strain, we obtained congenic lines 

304 harboring the mitochondrial haplotype of JP-R (G132A) and the nuclear background of Wasatch. 

305 As this uncouples the mitochondrial resistance mutations from confounding genomic factors, it is 

306 not only a validation of the phenotypic strength, but also a powerful approach to assess fitness 
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307 costs. Our analyses of the G132A congenic lines revealed a lower R0, rm, LM, and a higher DT 

308 compared with Wasatch. It therefore seems that in an acaricide-free environment the resistant 

309 genotypes might be less competitive and will grow slower than susceptible genotypes. In addition, 

310 we found that the resistant genotype is more male biased, which could further reduce the frequency 

311 of the transmission of G132A. Our findings could be important for the management of G132A 

312 conferred resistance in the field. It appears that the management of G132A resistance might be 

313 easier than that of the mutations without fitness costs, such as G126S + S141F and P262T.11

314 There are several reports on the fitness of resistant fungal species that carry the G143A (G132A 

315 in spider mites). Some species, such as Plasmopara viticola58, 59, and Magnaporthe oryzae60 show 

316 lower fitness. For example, conidia production of the field G143A azoxystrobin-resistant mutant 

317 of M. oryzae is lower than that of the susceptible wild-types.60 Other studies failed to find fitness 

318 costs in resistant species such as Blumeria graminis61, Alternaria alternata62, Botrytis cinerea63, 

319 and Colletotrichum acutatum64. These fitness studies, however, did not provide direct evidence for 

320 the association of fitness consequences with the G143A mutation. To evaluate the role of G143A 

321 in fungicide resistance and its impact on the fitness of fungi, the mutation was introduced into the 

322 cytochrome b of the yeast species Saccharomyces cerevisiae as a model system65. While 

323 confirming the involvement of the mutation in resistance, they showed that the mutation has a 

324 slightly deleterious effect on the bc1 function of the site mimic of some pathogenic fungi species 

325 but not all. The authors therefore argued that a small variation in the Qo site can affect the impact 

326 of the G143A mutation on bc1 activity, and can differentially affect the fitness between species. 

327 In this light, it is not surprising that different spider mite mutations can confer different levels of 

328 fitness penalties.
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329 5. Conclusion

330 In conclusion, new cytochrome b mutations were uncovered and several lines of evidence support 

331 the causal role of these mutations in bifenazate or acequinocyl resistance. Patterns of maternal 

332 inheritance and introgression experiments identified G132A as tightly linked with high levels of 

333 bifenazate resistance. In T. urticae, G126S + A133T conferred very high acequinocyl resistance, 

334 with only limited levels of bifenazate cross-resistance. Investigation into the fitness costs revealed 

335 that strains harboring G132A might be more easily managed.

336  
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512

513

514

515 Tables

516 Table 1. The cytochrome b Q0 genotypes of the surveyed T. urticae strains.

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531 All strains were field collected in Europe, except JP-R and Wasatch, which were laboratory strains. The substitutions in the 

532 conserved regions of the cytochrome b Q0 pocket (the cd1-helix and ef-helix) are described using the GSS genotype as reference 

533 (EU556751.1). *: Selected by cyenopyrafen, a complex II inhibitor, under laboratory conditions

534  

535

536

Strain Host Origin Qo genotype Access. Nr.

JP-R Rose Japan* G132A MN029033
Wasatch Tomato United States - MN276073
FS1 Rose the Netherlands G132A MN029034
FS2 Potted rose the Netherlands - MN029035
FS3 Cucumber the Netherlands G126S MN029048
FS4 Gerbera the Netherlands - MN276066
FS5 Rose the Netherlands G126S MN276067
FS6 Rose the Netherlands G126S MN276068
FS7 Cucumber United Kingdom G126S MN029041
FS8 Strawberry United Kingdom G126S/A133T MN029042
FS9 Rose United Kingdom G126S MN029043
FS10 Cucumber United Kingdom - MN029044
FS11 Strawberry United Kingdom P262T MN276069
FS12 Cucumber Belgium - MN029036
FS13 Raspberry Germany - MN029037
FS14 Hop Germany - MN029038
FS15 Hop Germany - MN029039
FS16 Hop Germany - MN029040
FS17 Carnation Italy - MN276070
FS18 Rose Italy - MN276071
FS19 Citrus Italy - MN276072
FS20 Strawberry Spain - MN029045
FS21 Cucumber Spain - MN029046
FS22 Rose Romania - MN029047
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537

538

539

540

541

542 Table 2. Bifenazate and acequinocyl resistance in T. urticae strains with novel Q0 

543 mutations. 

544 Isofemale lines were created from field strains with novel Q0 mutations and are specified by an ‘iso’ prefix. Strains with a ‘BC’ 
545 suffix were created by repeated back-crossing. Only adult females were used in the bioassays.

546

547 Table 3. Mode of inheritance of Q0I resistance in T. urticae strains with novel Q0 mutations.

Bifenazate Acequinocyl

Q0 genotype Cross (♀ x ♂) F1 LC50 (95% CI) (mg/L) D F1 LC50 (95% CI) (mg/L) D

JP-R × Wasatch 300.04 (257.39 - 347.51) 1.14 24.39 (21.94 - 26.85) 0.25

Wasatch × JP-R 7.59 (7.08 - 8.05) -0.95 19.64 (17.88 - 21.38) -0.08

iso-FS1 × Wasatch 167.04 (147.87 - 187.38) 0.75 36.71 (31.99 - 40.97) 0.95
G132A

Wasatch × iso-FS1 7.45 (6.69 - 8.08) -0.96 24.73 (21.62 - 27.4) 0.33

iso-FS8 × Wasatch 61.84 (58.81 - 64.87) 0.80 555.74 (439.98 - 676.06) 0.64
G126S + A133T

Wasatch × iso-FS8 5.85 (5.43 - 6.25) -1.14 28.72 (25.55 - 32.43) -0.59

548 D is the degree of dominance. Only adult females were used in the bioassays. 

549

550 Table 4. The effect of G132A on fertility life table parameters in T. urticae.

Q0 genotype Line N  R0 ± SE T ± SE DT ± SE rm ± SE LM ± SE
wild-type Wasatch 38 28.96 ± 2.58a 17.83 ± 0.24a 3.66 ± 0.08a 0.19 ± 0.004a 1.21 ± 0.005a

JP-R-BC1 38 12.88 ± 0.96b 17.58 ± 0.17a 4.76 ± 0.12b 0.14 ± 0.004b 1.16 ± 0.004b
JP-R-BC2 39 19.61 ± 1.55b 17.72 ± 0.22a 4.12 ± 0.07b 0.17 ± 0.003b 1.18 ± 0.004b

G132A

JP-R-BC3 39 13.71 ± 1.10b 17.38 ± 0.17a 4.59 ± 0.12b 0.15 ± 0.004b 1.16 ± 0.005b

Bifenazate Acequinocyl
Strain Q0 genotype LC50 (95%CI) (mg/ L) Slope ± SE RR LC50 (95%CI) (mg/L) Slope ±SE RR

Wasatch wild-type 6.93 (6.31 - 7.51) 4.88 ± 0.49 - 10.71 (10.23 - 11.15) -
JP-R 221.29 (192.80 - 250.93) 2.49 ± 0.19 31.93 39.86 (34.37 - 45.00) 3.36 ± 0.40 3.72
JP-R-BC1 164.13 (144.41 -185.17) 3.15 ± 0.27 23.68 23.19 (20.45 - 25.64) 4.68 ± 0.48 2.17
JP-R-BC2 153.84 (136.16 - 173.02) 3.14 ± 0.25 22.2 23.86 (21.01 - 26.24) 5.31 ± 0.59 2.23
JP-R-BC3 180.13 (148.97 -211.24) 3.17 ± 0.34 26 18.09 (16.13 - 19.85) 4.92 ± 0.49 1.69
FS1 126.8 (113.5 - 141.28) 3.26 ± 0.25 18.3 - - -
iso-FS1

G132A

261.35 (229.37 - 295.09) 3.12 ± 0.27 37.71 37.97 (34.04 - 41.81) 3.59 ± 0.29 3.55
FS8 51.42 (46.02 - 56.12) 4.87 ± 0.51 7.42 - - -
iso-FS8 79.22 (72.20 - 85.72) 5.47 ± 0.46 11.43 1340.51 (1053.38 - 1636.39) 1.67 ± 0.16 125.16
isoFS8-BC1 42.32 (38.25 - 50.00) 5.10 ± 0.49 6.11 699.291 (584.34 - 824.97) 2.62 ± 0.21 65.29
isoFS8-BC2 45.62 (39.98 - 52.08) 4.32 ± 0.40 6.58 617.56 (494.55 -751.54) 2.92 ± 0.25 57.66
isoFS8-BC3

G126S+
A133T

49.00 (42.47 - 57.00) 4.64 ± 0.42 7.1 820.47 (695.79 -956.49) 2.43 ± 0.2 76.60
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551 Net reproductive rate (R0), the intrinsic rate of increase (rm), the finite rate of increase (LM), mean generation time (T) and the 

552 doubling time (DT) of three near-isogenic lines of T. urticae (JP-R-BC1-3) and Wasatch were calculated. Means with different 

553 letters (a-b) within a column were significantly different at α = 0.05. N: Number of females

554

555

556 8. Figure Legends

557 Figure 1. The target-site mutations in the cd1- and ef-helices of mitochondrial cytochrome b 

558 in spider mites that confer QoI resistance. An amino acid alignment is shown of the cytochrome 

559 b cd1- and ef-helices of the spider mites T. urticae and P. citri, the fruit fly Drosophila 

560 melanogaster, human Homo sapiens, the fungi Venturia inaequalis and Saccharomyces cerevisiae, 

561 the protozoan Plasmodium falciparum, and the plant Arabidopsis thaliana. Fully conserved 

562 residues are shaded in grey. Asterisks indicate the locations of point mutations that are linked to 

563 QoI resistance in spider mites. The validated substitutions in the Qo pocket that cause bifenazate 

564 and acequinocyl resistance in spider mites are outlined below the alignment. °: these mutations 

565 were originally reported as I256V and N321S.55 

566

567 Figure 2. Bifenazate and acequinocyl dose-response toxicity data of susceptible reference and 

568 resistant strains carrying new QoI resistant mutations and their reciprocal crosses revealing 

569 the mode of inheritance. Panel A: Dose-response curves show that the JP-R and iso-FS1 strains 

570 that carry G132A were resistant to bifenazate, but susceptible to acequinocyl. Wasatch was 

571 susceptible to both acaricides. Reciprocal crosses showed that bifenazate resistance is maternally 

572 inherited. The mother for each cross is indicated between brackets. Panel B: Dose-response curves 

573 show that the iso-FS8 strain carrying G126S + A133T showed high levels of acequinocyl 

574 resistance, and moderate resistance to bifenazate. Wasatch was susceptible to both acaricides. 

575 Reciprocal crosses showed that both bifenazate and acequinocyl resistance is maternally inherited. 

576 The mother for each cross is indicated between brackets.
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577 Figure 3. The effect of G132A on single-generation life-history traits in T. urticae. Three 

578 introgressed lines carrying the G132A substitution were compared to Wasatch in terms of female 

579 longevity, female oviposition, ISS (immature stage survivorship), sex ratio (proportion of males), 

580 pre-oviposition period, oviposition period, and post-oviposition period. Letters (a-b) indicate 

581 significant differences at α = 0.05. The bottom and top of the boxplots depict the first and third 

582 quartiles. The central line shows the median, and the whiskers extend to the most extreme data 

583 points which are no more than 1.5 times the interquartile range from the box.

584

585 Figure 4. The effect of G132A on female longevity and oviposition in T. urticae. Panels A and 
586 B show the daily egg production per female and the proportion of alive females over the course of 
587 the experiment, respectively.
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Figure 1. The target-site mutations in the cd1- and ef-helices of mitochondrial cytochrome b in spider mites 

that confer QoI resistance. An amino acid alignment is shown of the cytochrome b cd1- and ef-helices of the 

spider mites T. urticae and P. citri, the fruit fly Drosophila melanogaster, human Homo sapiens, the fungi 

Venturia inaequalis and Saccharomyces cerevisiae, the protozoan Plasmodium falciparum, and the plant 

Arabidopsis thaliana. Fully conserved residues are shaded in grey. Asterisks indicate the locations of point 

mutations that are linked to QoI resistance in spider mites. The validated substitutions in the QoI pocket 

that cause bifenazate and acequinocyl resistance in spider mites are outlined below the alignment. ° : these 

mutations were originally reported as I256V and N321S. 
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Figure 2. Bifenazate and acequinocyl dose-response toxicity data of susceptible reference and resistant 

strains carrying new QoI resistant mutations and their reciprocal crosses revealing the mode of inheritance. 

Panel A: Dose-response curves show that the JP-R and FS1 strains that carry G132A were resistant to 

bifenazate, but susceptible to acequinocyl. Wasatch was susceptible to both acaricides. Reciprocal crosses 

showed that bifenazate resistance is maternally inherited. The mother for each cross is indicated between 

brackets. Panel B: Dose-response curves show that the FS8 strain carrying G126S + A133T showed high 

levels of acequinocyl resistance, and moderate resistance to bifenazate. Wasatch was susceptible to both 

acaricides. Reciprocal crosses showed that both bifenazate and acequinocyl resistance is maternally 

inherited. The mother for each cross is indicated between brackets. 
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Figure 3. The effect of G132A on single-generation life-history traits in T. urticae. Three introgressed lines 

carrying the G132A substitution were compared to Wasatch in terms of female longevity, female oviposition, 

ISS (immature stage survivorship), sex ratio (proportion of males), preoviposition period, oviposition period, 

and postoviposition period. Letters (a-b) indicate significant differences at α = 0.05. The bottom and top of 

the boxplots depict the first and third quartiles. The central line shows the median, and the whiskers extend 

to the most extreme data points which are no more than 1.5 times the interquartile range from the box. 
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Figure 4. The effect of G132A on female longevity and oviposition in T. urticae. Panels A and B show the 

daily egg production per female and the proportion of alive females over the course of the experiment, 

respectively 

177x150mm (300 x 300 DPI) 

Page 29 of 29

http://mc.manuscriptcentral.com/pm-wiley

Pest Management Science

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60


