237 research outputs found

    Differential roles of CCL2 and CCR2 in host defense to coronavirus infection.

    Get PDF
    The CC chemokine ligand 2 (CCL2, monocyte chemoattractant protein-1) is important in coordinating the immune response following microbial infection by regulating T cell polarization as well as leukocyte migration and accumulation within infected tissues. The present study examines the consequences of mouse hepatitis virus (MHV) infection in mice lacking CCL2 (CCL2(-/-)) in order to determine if signaling by this chemokine is relevant in host defense. Intracerebral infection of CCL2(-/-) mice with MHV did not result in increased morbidity or mortality as compared to either wild type or CCR2(-/-) mice and CCL2(-/-) mice cleared replicating virus from the brain. In contrast, CCR2(-/-) mice displayed an impaired ability to clear virus from the brain that was accompanied by a reduction in the numbers of antigen-specific T cells as compared to both CCL2(-/-) and wild-type mice. The paucity in T cell accumulation within the central nervous system (CNS) of MHV-infected CCR2(-/-) mice was not the result of either a deficiency in antigen-presenting cell (APC) accumulation within draining cervical lymph nodes (CLN) or the generation of virus-specific T cells within this compartment. A similar reduction in macrophage infiltration into the CNS was observed in both CCL2(-/-) and CCR2(-/-) mice when compared to wild-type mice, indicating that both CCL2 and CC chemokine receptor 2 (CCR2) contribute to macrophage migration and accumulation within the CNS following MHV infection. Together, these data demonstrate that CCR2, but not CCL2, is important in host defense following viral infection of the CNS, and CCR2 ligand(s), other than CCL2, participates in generating a protective response

    Satin associated lower cancer risk and related mortaity in patients with heart failure

    Get PDF
    Aims Patients with heart failure (HF) have an increased risk of incident cancer. Data relating to the association of statin use with cancer risk and cancer-related mortality among patients with HF are sparse. Methods and results Using a previously validated territory-wide clinical information registry, statin use was ascertained among all eligible patients with HF (n = 87 102) from 2003 to 2015. Inverse probability of treatment weighting was used to balance baseline covariates between statin nonusers (n = 50 926) with statin users (n = 36 176). Competing risk regression with Cox proportional-hazard models was performed to estimate the risk of cancer and cancer-related mortality associated with statin use. Of all eligible subjects, the mean age was 76.5 +/- 12.8 years, and 47.8% was male. Over a median follow-up of 4.1 years (interquartile range: 1.6-6.8), 11 052 (12.7%) were diagnosed with cancer. Statin use (vs. none) was associated with a 16% lower risk of cancer incidence [multivariable adjusted subdistribution hazard ratio (SHR) = 0.84; 95% confidence interval (CI), 0.80-0.89]. This inverse association with risk of cancer was duration dependent; as compared with short-term statin use (3 months to = 6 years of use. Ten-year cancer-related mortality was 3.8% among statin users and 5.2% among nonusers (absolute risk difference, -1.4 percentage points [95% CI, -1.6% to -1.2%]; adjusted SHR= 0.74; 95% CI, 0.67-0.81). Conclusion Our study suggests that statin use is associated with a significantly lower risk of incident cancer and cancer-related mortality in HF, an association that appears to be duration dependent. [GRAPHICS]

    Rabies screen reveals GPe control of cocaine-triggered plasticity.

    Get PDF
    Identification of neural circuit changes that contribute to behavioural plasticity has routinely been conducted on candidate circuits that were preselected on the basis of previous results. Here we present an unbiased method for identifying experience-triggered circuit-level changes in neuronal ensembles in mice. Using rabies virus monosynaptic tracing, we mapped cocaine-induced global changes in inputs onto neurons in the ventral tegmental area. Cocaine increased rabies-labelled inputs from the globus pallidus externus (GPe), a basal ganglia nucleus not previously known to participate in behavioural plasticity triggered by drugs of abuse. We demonstrated that cocaine increased GPe neuron activity, which accounted for the increase in GPe labelling. Inhibition of GPe activity revealed that it contributes to two forms of cocaine-triggered behavioural plasticity, at least in part by disinhibiting dopamine neurons in the ventral tegmental area. These results suggest that rabies-based unbiased screening of changes in input populations can identify previously unappreciated circuit elements that critically support behavioural adaptations

    A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma

    Get PDF
    The heterogeneity of cellular states in cancer has been linked to drug resistance, cancer progression and the presence of cancer cells with properties of normal tissue stem cells. Secreted Wnt signals maintain stem cells in various epithelial tissues, including in lung development and regeneration. Here we show that mouse and human lung adenocarcinomas display hierarchical features with two distinct subpopulations, one with high Wnt signalling activity and another forming a niche that provides the Wnt ligand. The Wnt responder cells showed increased tumour propagation ability, suggesting that these cells have features of normal tissue stem cells. Genetic perturbation of Wnt production or signalling suppressed tumour progression. Small-molecule inhibitors targeting essential posttranslational modification of Wnt reduced tumour growth and markedly decreased the proliferative potential of lung cancer cells, leading to improved survival of tumour-bearing mice. These results indicate that strategies for disrupting pathways that maintain stem-like and niche cell phenotypes can translate into effective anti-cancer therapies

    Human longevity is influenced by many genetic variants: evidence from 75,000 UK Biobank participants

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Variation in human lifespan is 20 to 30% heritable in twins but few genetic variants have been identified. We undertook a Genome Wide Association Study (GWAS) using age at death of parents of middle-aged UK Biobank participants of European decent (n=75,244 with father's and/or mother's data, excluding early deaths). Genetic risk scores for 19 phenotypes (n=777 proven variants) were also tested. In GWAS, a nicotine receptor locus(CHRNA3, previously associated with increased smoking and lung cancer) was associated with fathers' survival. Less common variants requiring further confirmation were also identified. Offspring of longer lived parents had more protective alleles for coronary artery disease, systolic blood pressure, body mass index, cholesterol and triglyceride levels, type-1 diabetes, inflammatory bowel disease and Alzheimer's disease. In candidate analyses, variants in the TOMM40/APOE locus were associated with longevity, but FOXO variants were not. Associations between extreme longevity (mother >=98 years, fathers >=95 years, n=1,339) and disease alleles were similar, with an additional association with HDL cholesterol (p=5.7x10-3). These results support a multiple protective factors model influencing lifespan and longevity (top 1% survival) in humans, with prominent roles for cardiovascular-related pathways. Several of these genetically influenced risks, including blood pressure and tobacco exposure, are potentially modifiable.This work was generously funded by an award to DM, TF, AM, LH and CB by the Medical Research Council MR/M023095/1. This research has been conducted using the UK Biobank Resource, under application 1417. The authors wish to thank the UK Biobank participants and coordinators for this unique dataset. S.E.J. is funded by the Medical Research Council (grant: MR/M005070/1). J.T. is funded by a Diabetes Research and Wellness Foundation Fellowship. R.B. is funded by the Wellcome Trust and Royal Society grant: 104150/Z/14/Z. M.A.T., M.N.W. and A.M. are supported by the Wellcome Trust Institutional Strategic Support Award (WT097835MF). R.M.F. is a Sir Henry Dale Fellow (Wellcome Trust and Royal Society grant: 104150/Z/14/Z). A.R.W. H.Y., and T.M.F. are supported by the European Research Council grant: 323195:GLUCOSEGENES-FP7-IDEAS-ERC. The funders had no influence on study design, data collection and analysis, decision to publish, or preparation of the manuscript. The Framingham Heart Study is supported by Contract No. N01-HC-25195 and HHSN268201500001I and its contract with Affymetrix, Inc for genotyping services (Contract No. N02-HL-6-4278). The phenotypegenotype association analyses were supported by National Institute of Aging R01AG29451. This work has made use of the resources provided by the University of Exeter Science Strategy and resulting Systems Biology initiative. Primarily these include high-performance computing facilities managed by Konrad Paszkiewicz of the College of Environmental and Life Sciences and Pete Leggett of the University of Exeter Academics services unit

    Early Career Aquatic Scientists Forge New Connections at Eco-DAS XV

    Get PDF
    A sense of kuleana (personal responsibility) in caring for the land and sea. An appreciation for laulima (many hands cooperating). An understanding of aloha ’āina (love of the land). The University of Hawai’i at Manoa hosted the 2023 Ecological Dissertations in Aquatic Sciences (Eco-DAS) program, which fostered each of these intentions by bringing together a team of early career aquatic ecologists for a week of networking and collaborative, interdisciplinary project development (Fig. 1)

    Streptozotocin, Type I Diabetes Severity and Bone

    Get PDF
    As many as 50% of adults with type I (T1) diabetes exhibit bone loss and are at increased risk for fractures. Therapeutic development to prevent bone loss and/or restore lost bone in T1 diabetic patients requires knowledge of the molecular mechanisms accounting for the bone pathology. Because cell culture models alone cannot fully address the systemic/metabolic complexity of T1 diabetes, animal models are critical. A variety of models exist including spontaneous and pharmacologically induced T1 diabetic rodents. In this paper, we discuss the streptozotocin (STZ)-induced T1 diabetic mouse model and examine dose-dependent effects on disease severity and bone. Five daily injections of either 40 or 60 mg/kg STZ induce bone pathologies similar to spontaneously diabetic mouse and rat models and to human T1 diabetic bone pathology. Specifically, bone volume, mineral apposition rate, and osteocalcin serum and tibia messenger RNA levels are decreased. In contrast, bone marrow adiposity and aP2 expression are increased with either dose. However, high-dose STZ caused a more rapid elevation of blood glucose levels and a greater magnitude of change in body mass, fat pad mass, and bone gene expression (osteocalcin, aP2). An increase in cathepsin K and in the ratio of RANKL/OPG was noted in high-dose STZ mice, suggesting the possibility that severe diabetes could increase osteoclast activity, something not seen with lower doses. This may contribute to some of the disparity between existing studies regarding the role of osteoclasts in diabetic bone pathology. Examination of kidney and liver toxicity indicate that the high STZ dose causes some liver inflammation. In summary, the multiple low-dose STZ mouse model exhibits a similar bone phenotype to spontaneous models, has low toxicity, and serves as a useful tool for examining mechanisms of T1 diabetic bone loss

    Functional genomic screening identifies dual leucine zipper kinase as a key mediator of retinal ganglion cell death

    Get PDF
    Glaucoma, a major cause of blindness worldwide, is a neurodegenerative optic neuropathy in which vision loss is caused by loss of retinal ganglion cells (RGCs). To better define the pathways mediating RGC death and identify targets for the development of neuroprotective drugs, we developed a high-throughput RNA interference screen with primary RGCs and used it to screen the full mouse kinome. The screen identified dual leucine zipper kinase (DLK) as a key neuroprotective target in RGCs. In cultured RGCs, DLK signaling is both necessary and sufficient for cell death. DLK undergoes robust posttranscriptional up-regulation in response to axonal injury in vitro and in vivo. Using a conditional knockout approach, we confirmed that DLK is required for RGC JNK activation and cell death in a rodent model of optic neuropathy. In addition, tozasertib, a small molecule protein kinase inhibitor with activity against DLK, protects RGCs from cell death in rodent glaucoma and traumatic optic neuropathy models. Together, our results establish a previously undescribed drug/drug target combination in glaucoma, identify an early marker of RGC injury, and provide a starting point for the development of more specific neuroprotective DLK inhibitors for the treatment of glaucoma, nonglaucomatous forms of optic neuropathy, and perhaps other CNS neurodegenerations
    • …
    corecore