176 research outputs found

    CGC, QCD Saturation and RHIC data (Kharzeev-Levin-McLerran-Nardi point of view)

    Full text link
    This is the talk given at the Workshop:"Focus on Multiplicitioes", Bari, Italy, 17-19 June,2004.. In this talk, we are going to discuss ion-ion and deuteron - nucleus RHIC data and show that they support, if not more, the idea of the new QCD phase: colour glass condensate with saturated parton density. .Comment: 26 pages with 33 figure

    Evidence from Identified Particles for Active Quark and Gluon Degrees of Freedom

    Get PDF
    Measurements of intermediate pT (1.5 < pT < 5.0 GeV/c) identified particle distributions in heavy ion collisions at SPS and RHIC energies display striking dependencies on the number of constituent quarks in the corresponding hadron. One finds that elliptic flow at intermediate pT follows a constituent quark scaling law as predicted by models of hadron formation through coalescence. In addition, baryon production is also found to increase with event multiplicity much faster than meson production. The rate of increase is similar for all baryons, and seemingly independent of mass. This indicates that the number of constituent quarks determines the multiplicity dependence of identified hadron production at intermediate pT. We review these measurements and interpret the experimental findings.Comment: 8 pages, 5 figures, proceedings for SQM2006 conference in Los Angele

    Perspectives of a Midrapidity Dimuon Program at RHIC: A Novel and Compact Muon Telescope Detector

    Full text link
    We propose a large-area, cost-effective Muon Telescope Detector (MTD) for the Solenoidal Tracker at RHIC (STAR) at mid-rapidity and for the next generation of detectors at a possible electron-ion collider. We utilize Multi-gap Resistive Plate Chambers with large modules and long readout strips (Long-MRPC) in the detector design. The results from cosmic ray and beam tests show the intrinsic timing and spatial resolution for a Long-MRPC are 60-70 ps and ∌1\sim1 cm, respectively. The prototype performance of such a novel muon telescope detector at STAR indicates that muon identification at the transverse momentum of a few GeV/cc can be achieved through the combined information of track matching with the MTD, ionization energy loss in the Time Projection Chamber, and time-of-flight measurements. A primary muon over secondary muon ratio of better than 1/3 can be achieved. This provides a promising device for future quarkonium programs and primordial dilepton measurements at RHIC. Simulations of the muon efficiency, the signal-to-background ratio of J/ψJ/\psi, the separation of ΄\Upsilon 1S from 2S+3S states, and the electron-muon correlation from charm pair production in the RHIC environment are presented.Comment: 18 pages, 10 figures, add more references, accepted by Journal of Physics

    ϕ\phi meson production and partonic collectivity at RHIC

    Full text link
    New results on ϕ\phi-meson production and elliptic flow v2v_{2} measurements from RHIC 2004 run (Run-IV) have been reviewed. In addition, the di-hadron correlation function between the trigged ϕ\phi and Ω\Omega and the associated soft particles was simulated. Knowledge about these results are discussed.Comment: 8 pages, 7 figures; Invited talk in International Conference on Strangess in Quark Matter (SQM2006), UCLA, California, USA, March 26-31, 2006; to be publsihed in the Proceeding isuue of J. Phys.

    Production Ratios of Strange Baryons from QGP with Diquarks

    Full text link
    Assuming that vector and scalar diquarks exist in the Quark-Gluon Plasma near the critical temporature TcT_c, baryons can be produced through the processes of quarks and diquarks forming (1/2)+({1/2})^+ baryon states. Ratios of different baryons can be estimated through this method, if such kind of QGP with diquarks can exists.Comment: Correct some expressions of equation

    Relevance of baseline hard proton-proton spectra for high-energy nucleus-nucleus physics

    Full text link
    We discuss three different cases of hard inclusive spectra in proton-proton collisions: high pTp_T single hadron production at s≈\sqrt{s}\approx 20 GeV and at s\sqrt{s} = 62.4 GeV, and direct photon production at s\sqrt{s} = 200 GeV; with regard to their relevance for the search of Quark Gluon Plasma signals in A+A collisions at SPS and RHIC energies.Comment: Proceeds. Hot Quarks 2004 Int. Workshop on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions. 26 pages. 26 figs. [minor corrs., refs. added

    Anisotropic flow at RHIC: How unique is the number-of-constituent-quark scaling?

    Get PDF
    The transverse momentum dependence of the anisotropic flow v2v_2 for π\pi, KK, nucleon, Λ\Lambda, Ξ\Xi and Ω\Omega is studied for Au+Au collisions at sNN=200\sqrt{s_{\rm NN}} = 200 GeV within two independent string-hadron transport approaches (RQMD and UrQMD). Although both models reach only 60% of the absolute magnitude of the measured v2v_2, they both predict the particle type dependence of v2v_2, as observed by the RHIC experiments: v2v_2 exhibits a hadron-mass hierarchy (HMH) in the low pTp_T region and a number-of-constituent-quark (NCQ) dependence in the intermediate pTp_T region. The failure of the hadronic models to reproduce the absolute magnitude of the observed v2v_2 indicates that transport calculations of heavy ion collisions at RHIC must incorporate interactions among quarks and gluons in the early, hot and dense phase. The presence of an NCQ scaling in the string-hadron model results suggests that the particle-type dependencies observed in heavy-ion collisions at intermediate pTp_T might be related to the hadronic cross sections in vacuum rather than to the hadronization process itself.Comment: 10 pages, 5 figures; A new author (H. Petersen) is added; A new figure (fig.1) on time evolution of elliptic flow and number of collisions is added; Version accepted for publication in J. Phys.

    Hydrodynamics and Flow

    Full text link
    In this lecture note, we present several topics on relativistic hydrodynamics and its application to relativistic heavy ion collisions. In the first part we give a brief introduction to relativistic hydrodynamics in the context of heavy ion collisions. In the second part we present the formalism and some fundamental aspects of relativistic ideal and viscous hydrodynamics. In the third part, we start with some basic checks of the fundamental observables followed by discussion of collective flow, in particular elliptic flow, which is one of the most exciting phenomenon in heavy ion collisions at relativistic energies. Next we discuss how to formulate the hydrodynamic model to describe dynamics of heavy ion collisions. Finally, we conclude the third part of the lecture note by showing some results from ideal hydrodynamic calculations and by comparing them with the experimental data.Comment: 40 pages, 35 figures; lecture given at the QGP Winter School, Jaipur, India, Feb.1-3, 2008; to appear in Springer Lecture Notes in Physic

    Thermal Dileptons at LHC

    Get PDF
    We predict dilepton invariant-mass spectra for central 5.5 ATeV Pb-Pb collisions at LHC. Hadronic emission in the low-mass region is calculated using in-medium spectral functions of light vector mesons within hadronic many-body theory. In the intermediate-mass region thermal radiation from the Quark-Gluon Plasma, evaluated perturbatively with hard-thermal loop corrections, takes over. An important source over the entire mass range are decays of correlated open-charm hadrons, rendering the nuclear modification of charm and bottom spectra a critical ingredient.Comment: 2 pages, 2 figures, contributed to Workshop on Heavy Ion Collisions at the LHC: Last Call for Predictions, Geneva, Switzerland, 14 May - 8 Jun 2007 v2: acknowledgment include

    Identification of High p⊄\rm p_{\perp} Particles with the STAR-RICH Detector

    Full text link
    The STAR-RICH detector extends the particle identification capapbilities of the STAR experiment for charged hadrons at mid-rapidity. This detector represents the first use of a proximity-focusing CsI-based RICH detector in a collider experiment. It provides identification of pions and kaons up to 3 GeV/c and protons up to 5 GeV/c. The characteristics and performance of the device in the inaugural RHIC run are described.Comment: 6 pages, 6 figure
    • 

    corecore