57,594 research outputs found

    Properties of recent IBAD-MOCVD Coated Conductors relevant to their high field, low temperature magnet use

    Full text link
    BaZrO3 (BZO) nanorods are now incorporated into production IBAD-MOCVD coated conductors. Here we compare several examples of both BZO-free and BZO-containing coated conductors using critical current (Ic) characterizations at 4.2 K over their full angular range up to fields of 31 T. We find that BZO nanorods do not produce any c-axis distortion of the critical current density Jc(theta) curve at 4.2 K at any field, but also that pinning is nevertheless strongly enhanced compared to the non-BZO conductors. We also find that the tendency of the ab-plane Jc(theta) peak to become cusp-like is moderated by BZO and we define a new figure of merit that may be helpful for magnet design - the OADI (Off-Axis Double Ic), which clearly shows that BZO broadens the ab-plane peak and thus raises Jc 5-30{\deg} away from the tape plane, where the most critical approach to Ic occurs in many coil designs. We describe some experimental procedures that may make critical current Ic tests of these very high current tapes more tractable at 4.2 K, where Ic exceeds 1000 A even for 4 mm wide tape with only 1 micron thickness of superconductor. A positive conclusion is that BZO is very beneficial for the Jc characteristics at 4.2 K, just as it is at higher temperatures, where the correlated c-axis pinning effects of the nanorods are much more obvious

    Optically-controlled single-qubit rotations in self-assembled InAs quantum dots

    Full text link
    We present a theory of the optical control of the spin of an electron in an InAs quantum dot. We show how two Raman-detuned laser pulses can be used to obtain arbitrary single-qubit rotations via the excitation of an intermediate trion state. Our theory takes into account a finite in-plane hole gg-factor and hole-mixing. We show that such rotations can be performed to high fidelities with pulses lasting a few tens of picoseconds.Comment: 6 pages, 4 figures; minor changes, J-ref adde

    Ghost excitonic insulator transition in layered graphite

    Get PDF
    Some unusual properties of layered graphite, including a linear energy dependence of the quasiparticle damping and weak ferromagnetism at low doping, are explained as a result of the proximity of a single graphene sheet to the excitonic insulator phase which can be further stabilized in a doped system of many layers stacked in the staggered (ABAB...ABAB...) configuration

    The Local Universe as Seen in Far-Infrared and in Far-Ultraviolet: A Global Point of View on the Local Recent Star Formation

    Get PDF
    We select far-infrared (FIR-60 microns) and far-ultraviolet (FUV-1530 A) samples of nearby galaxies in order to discuss the biases encountered by monochromatic surveys (FIR or FUV). Very different volumes are sampled by each selection and much care is taken to apply volume corrections to all the analyses. The distributions of the bolometric luminosity of young stars are compared for both samples: they are found to be consistent with each other for galaxies of intermediate luminosities but some differences are found for high (>5 10^{10} L_sun) luminosities. The shallowness of the IRAS survey prevents us from securing comparison at low luminosities (<2 10^9 L_sun). The ratio of the total infrared (TIR) luminosity to the FUV luminosity is found to increase with the bolometric luminosity in a similar way for both samples up to 5 10^{10} L_sun. Brighter galaxies are found to have a different behavior according to their selection: the L_TIR/L_FUV ratio of the FUV-selected galaxies brighter than 5 10^{10} L_sun reaches a plateau whereas L_TIR/L_FUV continues to increase with the luminosity of bright galaxies selected in FIR. The volume-averaged specific star formation rate (SFR per unit galaxy stellar mass, SSFR) is found to decrease toward massive galaxies within each selection. The SSFR is found to be larger than that measured for optical and NIR-selected sample over the whole mass range for the FIR selection, and for masses larger than 10^{10} M_sun for the FUV selection. Luminous and massive galaxies selected in FIR appear as active as galaxies with similar characteristics detected at z ~ 0.7.Comment: 32 pages, 9 figures, to be published in the Astrophysical Journal Supplement series dedicated to GALEX result

    Evidence for a dynamical ground state in the frustrated pyrohafnate Tb2Hf2O7

    Get PDF
    We report the physical properties of Tb2Hf2O7 based on ac magnetic susceptibility \chi_ac(T), dc magnetic susceptibility \chi(T), isothermal magnetization M(H), and heat capacity C_p(T) measurements combined with muon spin relaxation (\muSR) and neutron powder diffraction measurements. No evidence for long-range magnetic order is found down to 0.1 K. However, \chi_ac(T) data present a frequency-dependent broad peak (near 0.9 K at 16 Hz) indicating slow spin dynamics. The slow spin dynamics is further evidenced from the \muSR data (characterized by a stretched exponential behavior) which show persistent spin fluctuations down to 0.3 K. The neutron powder diffraction data collected at 0.1 K show a broad peak of magnetic origin (diffuse scattering) but no magnetic Bragg peaks. The analysis of the diffuse scattering data reveals a dominant antiferromagnetic interaction in agreement with the negative Weiss temperature. The absence of long-range magnetic order and the presence of slow spin dynamics and persistent spin fluctuations together reflect a dynamical ground state in Tb2Hf2O7.Comment: 11 pages and 8 figure

    Charge order, dynamics, and magneto-structural transition in multiferroic LuFe2_2O4_4

    Get PDF
    We investigated the series of temperature and field-driven transitions in LuFe2_2O4_4 by optical and M\"{o}ssbauer spectroscopies, magnetization, and x-ray scattering in order to understand the interplay between charge, structure, and magnetism in this multiferroic material. We demonstrate that charge fluctuation has an onset well below the charge ordering transition, supporting the "order by fluctuation" mechanism for the development of charge order superstructure. Bragg splitting and large magneto optical contrast suggest a low temperature monoclinic distortion that can be driven by both temperature and magnetic field.Comment: 4 pages, 3 figures, PRL in prin

    Doping Dependence of Collective Spin and Orbital Excitations in Spin 1 Quantum Antiferromagnet La2x_{2-x}Srx_xNiO4_4 Observed by X-rays

    Full text link
    We report the first empirical demonstration that resonant inelastic x-ray scattering (RIXS) is sensitive to \emph{collective} magnetic excitations in S=1S=1 systems by probing the Ni L3L_3-edge of La2x_{2-x}Srx_xNiO4_4 (x=0,0.33,0.45x = 0, 0.33, 0.45). The magnetic excitation peak is asymmetric, indicating the presence of single and multi spin-flip excitations. As the hole doping level is increased, the zone boundary magnon energy is suppressed at a much larger rate than that in hole doped cuprates. Based on the analysis of the orbital and charge excitations observed by RIXS, we argue that this difference is related to the orbital character of the doped holes in these two families. This work establishes RIXS as a probe of fundamental magnetic interactions in nickelates opening the way towards studies of heterostructures and ultra-fast pump-probe experiments.Comment: 8 pages, 4 figures, see ancillary files for the supplemental materia
    corecore