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Ghost excitonic insulator transition in layered graphite
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Some unusual properties of layered graphite, including a linear energy dependence of the quasi-
particle damping and weak ferromagnetism at low doping, are explained as a result of the proximity
of a single graphene sheet to the excitonic insulator phase which can be further stabilized in a doped
system of many layers stacked in the staggered (ABAB . . .) configuration.

The continuing interest in carbon-based materials has
intensified both experimental and theoretical efforts to
understand their electronic properties and interaction-
driven transitions in these systems.

The problem of electronic instabilities in a single sheet
of graphite has been previously studied by means of the
Hartree-Fock and density functional methods with a fo-
cus on the short-ranged (including on-site and nearest
neighbor) Hubbard-like repulsive interactions, and the
inter-site repulsion was found to favor a charge density
wave (CDW) ground state [1]. This analysis did not pro-
vide, however, a proper account of the Coulomb forces
that remain long-ranged due to the lack of conventional
screening in semimetals, such as graphite.

In contrast, the authors of Ref. [2] specifically focused
on the role of the Coulomb interactions. From the renor-
malization group calculation in the second order in the
dimensionless Coulomb coupling g = 2πe2/ε0v they con-
cluded that the renormalized coupling monotonously de-
creases at low energies and, therefore, it can not cause
any instability of the gapless paramagnetic ground state
of graphite.

Besides, the authors of Ref. [2] suggested a possi-
ble explanation for the experimentally observed [3] lin-
ear energy dependence of the quasiparticle damping (de-
fined as the imaginary part of the quasiparticle disper-
sion ǫ = Ep + iΣ(ǫ) ) which they found to behave as
Σ(ǫ) ∼ ǫ/ ln2 ǫ at low energies. However, the large esti-
mated value of the bare coupling constant (g >∼ 10) calls
these results into question and warrants further investi-
gation.

In the present Letter, we revisit the problem of the
Coulomb interacting electrons in layered graphite and
study the nature of the ground state and the quasipar-
ticle spectrum at strong coupling. This time around, we
employ a non-perturbative approach by solving a non-
linear equation for the electron Green function, which
will allow us to ascertain the status of the previous re-
sults obtained in perturbation theory and test our the-
oretical predictions against several pieces of the existing
experimental evidence.

The semimetallic energy band structure of a single
graphene sheet gives rise to the conduction and va-
lence bands’ touching each other in the two inequivalent
K-points located at the corners of the hexagonal two-
dimensional (2D) Brillouin zone. In the absence of in-

teractions, the low-energy quasiparticle excitations with
the momenta in the vicinity of these points labeled as

i = 1, 2 have linear dispersion E
(0)
p = ±vp, the velocity v

being proportional to the width of the electronic π-band
t ≈ 2.4eV [4].
These excitations can be formally described by a pair of

two-component (Weyl) spinors ψiσ, each carrying a spin
index σ, which are composed of the Bloch states residing
on the two different sublattices of the bi-partite hexag-
onal lattice of the graphene sheet. In what follows, we
choose to combine them into one four-component Dirac
spinor Ψσ = (ψ1σ, ψ2σ) and also treat the number of
the spin components N as an adjustable parameter, the
physical case corresponding to N = 2.
The use of the Dirac spinor representation allows

one to cast the free quasiparticle Hamiltonian in the
relativistic-like form where v is playing the role of the
speed of light

H0 = iv

N
∑

σ=1

∫

r

Ψσ(γ̂1∇x + γ̂2∇y)Ψσ (1)

where Ψσ = Ψ†
σγ̂0 and the reducible representation of

the 4 × 4 γ-matrices γ̂0,1,2 = (τ3, iτ2,−iτ1) ⊗ τ3 given
in terms of the triplet of the Pauli matrices τi satis-
fies the usual anticommutation relations: {γ̂µ, γ̂ν} =
2diag(1,−1,−1)1⊗ 1.
In the four-spinor representation, the electron

Coulomb interaction reads as

HC =
v

4π

N
∑

σ,σ′=1

∫

r,r′
Ψσ(r)γ̂0Ψσ(r)

g

|r− r′|Ψσ′(r′)γ̂0Ψσ′(r′)

(2)

Despite the apparent lack of the Lorentz invariance,
Eq.(2) remains invariant under arbitrary U(2N) rota-
tions of the 2N -component vector (ΨLσ,ΨRσ) composed
of the chiral Dirac fermions defined as: ΨL,Rσ = 1

2 (1 ±
γ̂5)Ψσ, where the matrix γ̂5 = 1⊗ τ2 anticommutes with
any γ̂µ.
The chiral invariance of Eqs.(1,2) brings about the pos-

sibility of spontaneous chiral symmetry breaking (CSB),
akin the phenomenon that has long been studied in
the relativistic fermion theories. The CSB transition
manifests itself in the appearance of a fermion mass
and gapping of the fermion spectrum, thus breaking

1

http://arxiv.org/abs/cond-mat/0101306v4


the continuous chiral symmetry from U(2N) down to
U(N) ⊗ U(N) and developing a non-zero expectation

value <
∑N

σ Ψσ(r)Ψσ(r) >=<
∑N

σ (ψ†
σ(A)ψσ(A) −

ψ†
σ(B)ψσ(B)) >. The latter corresponds to the elec-

tron density modulation which alternates between the
two sublattices (A and B).
In light of the above, one can identify the CSB order

parameter with the site-centered CDW and thus relate it
to the p = 0 value of the gap function ∆p appearing in
the renormalized (and, generally, non-Lorentz invariant)
fermion Green function

Ĝp = Zp[(ǫγ̂0 − vp~p~̂γ) + ∆p]
−1 (3)

where the interaction effects can also give rise to the non-
trivial wave function (Zp) and velocity (vp/v) renormal-
ization factors.
Because of its intrinsically non-perturbative nature,

the phenomenon of CSB evades weak-coupling analysis
based on perturbation theory. Nonetheless, similar to
its relativistic counterpart [5], the CSB can be revealed
by a non-perturbative solution of the system of non-
linear equations for the fermion Green function (hereafter

p̂ = ǫγ̂0 − v~p~̂γ)

Ĝ−1
p = p̂+

∫

d3k

(2π)3
Γp,kγ̂0Ĝp+k γ̂0Vk, (4)

vertex function Γp,k, and effective Coulomb interaction
Vk = 1/[(q/gv)+Nχ(ω,q)] which gets strongly modified
by the intra-layer polarization of the Dirac fermions

χk = Tr

∫

d3p

(2π)3
Γp,kγ̂0Ĝp+kγ̂0Ĝp (5)

A further analytical progress is hindered by the fact that,
as a result of the interaction’s Vk being explicitly non-
Lorentz invariant, the gap function ∆p can feature sep-
arate dependencies on the energy ǫ and momentum p

variables. Therefore, we choose to proceed directly with
the finite temperature counterpart of Eq.(4), in which
case the Lorentz invariance is broken regardless of the
symmetry of the fermion interactions.
In order to get a preliminary insight into the problem

we resort to the same approximations as those made in
the previous studies of CSB in the context of QED3 [5].
To this end, we first neglect the wave function, velocity,
and vertex renormalizations (Zp = vp/v = Γp,k = 1) in
Eq.(4) whose scalar part then becomes a closed equation
for the fermion gap function. As shown in [5], neglecting
the above renormalizations in the gap equation suffices
for establishing the existence of its non-trivial solution(s)
and estimating a critical value Nc of the only remaining
free parameter, the number of fermion species.
Taking the sum over the discrete Matsubara frequen-

cies we then arrive at the momentum-dependent gap
equation

∆p =

∫

d2k

8π2

tanhEk/2T

Ek

∆k

|k− p|/gv +Nχ(0,k− p)
(6)

where Ep =
√

v2p2 +∆2
p. Next, we approximate the

exact finite temperature fermion polarization (5) by that
computed in the massless case. By doing so, we overes-
timate the contribution of the fermion momenta p <∼ ∆p

which is, however, unimportant, as long as the gap re-
mains much smaller than the high-momentum cutoff Λ
comparable to the maximum span of the Brillouin zone.
As shown below, this condition is indeed satisfied for N
close to the critical value Nc.

At ∆p = 0 the fermion polarization is given by the
approximate formula

χ(0,q) =
2T

πv2F

∫ ∞

0

dx ln[2 cosh(
vq

2T

√

x(1− x))]

≈ 1

8v2
[vq + cT exp(−vq

cT
)] (7)

which, for c = 16 ln 2/π, provides an up to a few percent
accurate interpolation between the two opposite limits:
vq ≫ T where Eq.(7) agrees with the zero-temperature

result χk ∝
√
k2 and vq ≪ T where it exhibits thermal

screening χ0 ∝ T [6].

Notably, at strong coupling (g ≫ 1) the screened
Coulomb interaction Vk becomes independent of the bare
coupling constant and assumes a universal form Vk ≈
1/χ(0,k) governed by the fermion polarization (7).

Upon differentiating Eq.(6) with respect to the mo-
mentum p one finds that for Ep > T this non-linear
integral equation reduces to a linear differential one

d2∆p

dp2
+

2

p

d∆p

dp
+

2

πN

∆p

p2
= 0 (8)

which has to be supplemented by the boundary condi-
tions ∆0 <∞ and (∆p + pd∆p/dp)|p=Λ = 0.

In turn, Eq.(8) can be readily identified with the radial
Schroedinger equation for the s-wave zero energy level in
the potential that behaves as ∝ 1/p2 for p > T/v. From
the textbook solution of this problem [7] we infer that
for N > Nc = 8/π there are two independent solutions

∆±
p ∝ 1/p(1±

√
1−Nc/N)/2, neither of which can satisfy

the above boundary conditions. In contrast, for N < Nc

there exists a solution with infinitely many nodes, con-
sistent with the infinite number of the negative energy
levels in the 1/p2-potential. Thus, only in this ”center-
ward downfall” regime does the solution

∆p ∼ T 3/2

√
vp

sin(
1

2

√

Nc

N
− 1 ln

vp

T
) (9)

monotoneously decrease in the interval T/v < p < Λ and
satisfy the boundary condition at p = Λ which reads as
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√

Nc

N
− 1 ln

vΛ

T
= 2πn− 2 tan−1(

1

2

√

Nc

N
− 1) (10)

where n is a positive integer. We note, in passing, that
due to the formal similarity between the underlying equa-
tions, a solution with the similar critical properties has
also been discovered in the context of the 2D Cooper
pairing near the antiferromagnetic instability [8].
The highest critical temperature Tc(N) below which

the CSB order parameter sets in corresponds to n = 1:

Tc(N) ≈ vΛ exp(− 2π
√

Nc/N − 1
) (11)

According to Eq.(11), at non-zero temperatures the crit-
ical number of fermion species gets reduced: Nc(0) −
Nc(T ) ≈ 4π2Nc(0)/ ln

2(vΛ/T ).
In the case of QED3, the progressively more and more

refined numerical simulations [6] have demonstrated that
the results of the original analytical approach of Ref.
[5] which yielded a solution similar to Eq.(9) remain
robust against relaxing the above approximations and
taking into account both the wave function renormaliza-
tion and the vertex function satisfying the Ward identity
Γp,0 = Zp.
Likewise, a numerical analysis of the coupled Eqs.(4)

and (5) confirms the existence of the solution (9) in a
whole domain bordered by the critical line (11) in the
N − T plane [9].
Also, the numerically evaluated characteristic ratio

2∆0/Tc ≈ 10 appears to be close to that found in Ref. [6]
which is substantially greater than the BCS value corre-
sponding to the solution ∆p = const of the gap equation
with a momentum-independent kernel.
As far as the nature of the CSB transition is concerned,

the observed N -dependence of the zero-momentum
fermion gap ∆0 ∝ exp(−2π/

√

Nc/N − 1) prompts one to
identify the breaking of the continuous chiral symmetry
as a topological (Kosterlitz-Thouless-type) phase transi-
tion in 2+1 dimensions [5]. Thus, the finite temperature
CSB transition occurs between the two phases which are
both chirally symmetrical, and therefore a bosonic Gold-
stone mode must be present in the quasi-ordered phase.
As regards the critical number of fermion species it-

self, the recent symmetry-based argument made in the
context of QED3 shows that the gap equation systemat-
ically overestimates the actual value of Nc which may, in
fact, be as low as 3/2 [10] while the gap equation yields
NQED

c = 32/π2 [5].
The demonstrated formal relationship between the fi-

nite temperature QED3 and the problem of a single
graphene sheet suggests that in the latter case the ac-
tual critical number of fermion species might also be less
than two, hence no CSB occurs.
Nonetheless, even at N > Nc the nearby CSB transi-

tion, albeit unreachable at any g, can still have a pro-
found effect on the quasiparticle spectrum both above

and below the crossover into the quantum-critical regime
associated with the zero-temperature quantum-critical
point at Nc.
In the quantum disordered (low-temperature) regime

T <∼ T ⋆(N), where the crossover temperature T ⋆(N)
vanishes at N → Nc+0 in the same manner as Tc(N)
given by Eq.(11) for N → Nc−0, the only solution of
Eqs.(4) and (5) is a massless fermion propagator which
exhibits a suppression of the residue of the bare quasipar-
ticle pole: Zp → 0 for p → 0, while the velocity vp un-
dergoes singular renormalization and monotonously in-
creases with decreasing momentum, unlike in the Lorent-
invariant QED3 where it remains constant.
By contrast, in the quantum-critical regime T >∼

T ⋆(N) the fermion propagator features a simple pole,
whereas the temperature- (but no longer momentum-)
dependent factors ZT and vT control its residue and the
effective velocity, respectively. The fermion damping is
then determined by the self-consistent equation

Σ(ǫ) =
1

N

∫

dωdq

(2π)3

{

tanh
ε+ ω

2T
− coth

ω

2T

}

×

Im

[

ε+ ω + iΣ(ε+ ω)

(ε+ ω + iΣ(ε+ ω))2 − v2q2

]

Im
1

χ(ω,q)
(12)

which yields the universal solution: Σ(ǫ) ∼ max(ǫ, T ), in
a general agreement with the time-resolved two-photon
photoemission data taken in the energy range 0.4 < ǫ <
2eV [3]. One can expect that this characteristic signa-
ture of the CSB-related quantum-critical behavior will be
even more pronounced in the case of a graphite monolayer
deposited on an insulating surface, whereas a conducting
substrate would hamper the possibility of observing the
linear damping due to strong metallic screening.
The predicted linear damping should be possible to ob-

serve in angular-resolved photoemission which can specif-
ically probe the vicinity of the K-points. On the con-
trary, the angular-averaged data are going to be affected
by such details of the graphite bandstructure as, e.g.,
the saddle point in the quasiparticle dispersion which
occurs at ǫ ≈ 1.5eV if the momentum resides at one
of the M -points of the Brillouin zone. This saddle
point was recently argued to be a likely cause of the
additional plateau-like feature observed in the angular-
averaged Σ(ǫ) [11] which is, therefore, unrelated to the
many-body phenomena discussed in this Letter.
In a stack of graphite layers with the inter-layer spacing

d, the screened intra-layer Coulomb interaction remains
dominated by the polarization χk only at q > 1/Ngd.
At still lower momenta the kernel in Eq.(6) becomes less
singular (Vk ∝ 1/

√
q), thus reducing the range of tem-

peratures and/or energies where the quantum-critical be-
havior associated with the nearby CSB transition can be
observed in electron photoemission.
A finite inter-layer hopping t⊥ ≈ 0.27eV provides an-

other cutoff below which the particle-hole pairing cor-
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relations cease to drive the system towards the opening
of the excitonic gap, and the quasiparticle damping be-
comes quadratic in energy for ǫ <∼ t⊥.

In contrast, the inter-layer Coulomb interaction has
the opposite effect of nudging a stack of graphite layeres
closer to the CSB instability. To elucidate this point, we
recall that the common form of graphite has a crystal
structure of well-separated hexagonal layers stacked in a
staggered (ABAB . . .) configuration. As a result, each
layer gets naturally divided into two sublattices formed
by the atoms positioned just above and below the centers
and corners of the hexagons in the two adjacent layers,
respectively.

Thus the inter-layer Coulomb repulsion strengthens
the system’s propensity towards developing the CDW in-
stability by favoring spontaneous depletion of one of the
two sublattices (accompanied by excess occupation of the
complementary one) which alternates between the layers
in order to keep the electrons in the neighboring layers
as far apart as possible.

Formally, one can incorporate this effect of the inter-
layer Coulomb interaction into the effective single-layer
description by adding a short-ranged four-fermion term
λ(
∑N

σ ΨσΨσ)
2 into Eq.(2). With such a term present,

the CSB transition occurs for any number of fermion
species, including N > Nc, provided that the strength of
this coupling exceeds a certain critical value (λ > λc(N))
which grows with N [9].

By further elaborating on the solution of Eq.(6) ob-
tained in the physical case N = 2 we also find out
that, upon doping the system of graphite layers, the ex-
citonic insulating ground state tends to spontaneously
develop a non-zero spin polarization < ψ†

σ(A)ψσ(A) +
ψ†
σ(B)ψσ(B) >∼ µδσσ0

proportional to the chemical po-
tential µ introduced by doping [9].

This observation sheds light on the possible origin
of weak ferromagnetism which was recently observed in
highly oriented pyrolitic graphite (HOPG) [12]. Our
fundings suggest that the latter might be not that dif-
ferent from the mechanism proposed in the recent stud-
ies of hexaborides believed to be 3D excitonic insulators
[13]. Notably, the authors of Ref. [12] excluded mag-
netic impurities as a possible cause of the ferromagnetic
behavior of the magnetization hysteresis loops (also con-
sistent with the electron spin resonance data) observed
in the samples showing the insulator-like temperature de-
pendence of the resistivity. Elaborating on the analysis of
Ref. [13] we predict that if the excitonic instability proved
to be at work, the weak ferromagnetism would have to
disappear above a certain level of doping corresponding
to the chemical potential µc ∼ ∆0.

In summary, we study the problem of the Coulomb
interaction-driven electronic instabilities in layered
graphite and propose a new explanation for the exper-
imentally observed linear quasiparticle damping which

might be a result of the relative proximity of a single
graphene sheet to the zero-temperature quantum-critical
point corresponding to the transition to the 2D exci-
tonic insulator. In lightly doped layered graphite, the
excitonic instability give rise to the formation of the
site-centered CDW ground state exhibiting weak ferro-
magnetism, as observed experimentally. Together with
the recently proposed explanation [14] of the apparent
semimetal-insulator transition in applied magnetic field
[15] as a phenomenon of the magnetic field-driven CSB,
it lends a further support to the discovered formal re-
lationship between the problem of layered graphite and
the behaviors found in the relativistic theories of the 2D
Dirac fermions.
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