122 research outputs found

    Kinetics and thermodynamics of electron transfer in Debye solvents: An analytical and nonperturbative reduced density matrix theory

    Full text link
    A nonperturbative electron transfer rate theory is developed based on the reduced density matrix dynamics, which can be evaluated readily for the Debye solvent model without further approximation. Not only does it recover for reaction rates the celebrated Marcus' inversion and Kramers' turnover behaviors, the present theory also predicts for reaction thermodynamics, such as equilibrium Gibbs free-energy and entropy, some interesting solvent-dependent features that are calling for experimental verification. Moreover, a continued fraction Green's function formalism is also constructed, which can be used together with Dyson equation technique, for efficient evaluation of nonperturbative reduced density matrix dynamics.Comment: 8 pages, 5 figures. J. Phys. Chem. B, accepte

    Genetic Evolution and Molecular Selection of the HE Gene of Influenza C Virus

    Get PDF
    Influenza C virus (ICV) was first identified in humans and swine, but recently also in cattle, indicating a wider host range and potential threat to both the livestock industry and public health than was originally anticipated. The ICV hemagglutinin-esterase (HE) glycoprotein has multiple functions in the viral replication cycle and is the major determinant of antigenicity. Here, we developed a comparative approach integrating genetics, molecular selection analysis, and structural biology to identify the codon usage and adaptive evolution of ICV. We show that ICV can be classified into six lineages, consistent with previous studies. The HE gene has a low codon usage bias, which may facilitate ICV replication by reducing competition during evolution. Natural selection, dinucleotide composition, and mutation pressure shape the codon usage patterns of the ICV HE gene, with natural selection being the most important factor. Codon adaptation index (CAI) and relative codon deoptimization index (RCDI) analysis revealed that the greatest adaption of ICV was to humans, followed by cattle and swine. Additionally, similarity index (SiD) analysis revealed that swine exerted a stronger evolutionary pressure on ICV than humans, which is considered the primary reservoir. Furthermore, a similar tendency was also observed in the M gene. Of note, we found HE residues 176, 194, and 198 to be under positive selection, which may be the result of escape from antibody responses. Our study provides useful information on the genetic evolution of ICV from a new perspective that can help devise prevention and control strategies

    Design, synthesis and biological evaluation of biphenyl-benzamides as potent FtsZ inhibitors

    Get PDF
    The rapid emergence of antibiotic resistance has become a prevalent threat to public health, thereby development of new antibacterial agents having novel mechanisms of action is in an urgent need. Targeting at the cytoskeletal cell division protein filamenting temperature-sensitive mutant Z (FtsZ) has been validated as an effective and promising approach for antibacterial drug discovery. In this study, a series of novel biphenyl-benzamides as FtsZ inhibitors has been rationally designed, synthesized and evaluated for their antibacterial activities against various Gram-positive bacteria strains. In particular, the most promising compound 30 exhibited excellent antibacterial activities, especially against four different Bacillus subtilis strains, with an MIC range of 0.008 μg/mL to 0.063 μg/mL. Moreover, compound 30 also showed good pharmaceutical properties with low cytotoxicity (CC50 &gt; 20 μg/mL), excellent human metabolic stability (T1/2 = 111.98 min), moderate pharmacokinetics (T1/2 = 2.26 h, F = 61.2%) and in vivo efficacy, which can be identified as a promising FtsZ inhibitor worthy of further profiling.</p

    Glassy carbon electrode modified with 7,7,8,8-tetracyanoquinodimethane and graphene oxide triggered a synergistic effect: low-potential amperometric detection of reduced glutathione.

    Get PDF
    A sensitive electrochemical sensor based on the synergistic effect of 7,7,8,8-tetracyanoquinodimethane (TCNQ) and graphene oxide (GO) for low-potential amperometric detection of reduced glutathione (GSH) in pH 7.2 phosphate buffer solution (PBS) has been reported. This is the first time that the combination of GO and TCNQ have been successfully employed to construct an electrochemical sensor for the detection of glutathione. The surface of the glassy carbon electrode (GCE) was modified by a drop casting using TCNQ and GO. Cyclic voltammetric measurements showed that TCNQ and GO triggered a synergistic effect and exhibited an unexpected electrocatalytic activity towards GSH oxidation, compared to GCE modified with only GO, TCNQ or TCNQ/electrochemically reduced GO. Three oxidation waves for GSH were found at −0.05, 0.1 and 0.5 V, respectively. Amperometric techniques were employed to detect GSH sensitively using a GCE modified with TCNQ/GO at −0.05 V. The electrochemical sensor showed a wide linear range from 0.25 to 124.3 μM and 124.3 μM to 1.67 mM with a limit of detection of 0.15 μM. The electroanalytical sensor was successfully applied towards the detection of GSH in an eye drop solution

    Variation of culturable bacteria along depth in the East Rongbuk ice core, Mt. Everest

    Get PDF
    AbstractIce melt water from a 22.27 m ice core which was drilled from the East Rongbuk Glacier, Mt. Everest was incubation in two incubation ways: plate melt water directly and enrichment melt water prior plate, respectively. The abundance of cultivable bacteria ranged from 0–295 CFU mL−1 to 0–1720 CFU mL−1 in two incubations with a total of 1385 isolates obtained. Comparing to direct cultivation, enrichment cultivation recovered more bacteria. Pigment-producing bacteria accounted for an average of 84.9% of total isolates. Such high percentage suggested that pigment production may be an adaptive physiological feature for the bacteria in ice core to cope with strong ultraviolet radiation on the glacier. The abundances of cultivable bacteria and pigment-producing isolates varied synchronously along depth: higher abundance in the middle and lower at the top and bottom. It indicated that the middle part of the ice core was hospitable for the microbial survival. Based on the physiological properties of the colonies, eighty-nine isolates were selected for phylogenetic analysis. Obtained 16S rRNA gene sequences fell into four groups: Firmicutes, Alpha-Proteobacteria, Gamma-Proteobacteria, and Actinobacteria, with the Firmicutes being dominant. Microbial compositions derived from direct and enrichment cultivations were not overlapped. We suggest that it is a better way to explore the culturable microbial diversity in ice core by combining the approaches of both direct and enrichment cultivation

    Electrografting of amino-TEMPO on graphene oxide and electrochemically reduced graphene oxide for electrocatalytic applications.

    Get PDF
    4-Amino-2,2,6,6-tetramethyl-1-piperridine N-oxyl (4-amino-TEMPO), an electroactive nitroxide radical, was attached to the surface of graphene oxide (GO) and electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode by a simple, rapid and green electrografting method. The electroactive interfaces were analyzed by X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). The calculated surface coverage for 4-amino-TEMPO is up to 1.55 × 10− 9 mol·cm− 2. The modified electroactive interface exhibited excellent electrocatalytic activity towards the electro-oxidation of reduced glutathione (GSH) and hydrogen peroxide (H2O2)

    Immunological effects of the PE/PPE family proteins of Mycobacterium tuberculosis and related vaccines

    Get PDF
    Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb), and its incidence and mortality are increasing. The BCG vaccine was developed in the early 20th century. As the most widely administered vaccine in the world, approximately 100 million newborns are vaccinated with BCG every year, which has saved tens of millions of lives. However, due to differences in region and race, the average protective rate of BCG in preventing tuberculosis in children is still not high in some areas. Moreover, because the immune memory induced by BCG will weaken with the increase of age, it is slightly inferior in preventing adult tuberculosis, and BCG revaccination cannot reduce the incidence of tuberculosis again. Research on the mechanism of Mtb and the development of new vaccines against TB are the main strategies for preventing and treating TB. In recent years, Pro-Glu motif-containing (PE) and Pro-Pro-Glu motif-containing (PPE) family proteins have been found to have an increasingly important role in the pathogenesis and chronic protracted infection observed in TB. The development and clinical trials of vaccines based on Mtb antigens are in progress. Herein, we review the immunological effects of PE/PPE proteins and the development of common PE/PPE vaccines

    Facile synthesis of a nickel sulfide (NiS) hierarchical flower for the electrochemical oxidation of H2O2 and the methanol oxidation reaction (MOR).

    Get PDF
    The synthesis of a novel hierarchical flower-like NiS via a solvothermal method for the electrochemcial oxidation of H2O2 on a carbon paste electrode with high catalytic activity for the (MOR) in an alkaline medium has been reported. Novel nickel sulfide (NiS) hierarchical flower-like structures were characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscopy. A carbon paste electrode was modified with the as-prepared hierarchical flower-like NiS, resulting in a high electrocatalytic activity toward the oxidation of H2O2. The NiS-modified electrode was used for H2O2 sensing, which was achieved over a wide linear range from 0.5 μMto1.37mM(I/μA =-0.19025 + 0.06094 C/mM) with a low limit of detection (LOD) of 0.3 μM and a limit of quantitation (LOQ) of 0.8 μM. The hierarchical flower-like NiS also exhibited a high electrocatalytic activity for the methanol oxidation reaction (MOR) in an alkaline medium with a high tolerance toward the catalyst-poisoning species generated during the MOR. The MOR proceeded via the direct electrooxidation of methanol on the oxidized NiS surface layer because the oxidation peak potential of the MOR was more positive than that of the oxidation of NiS

    Accumulation of perfluoroalkyl compounds in Tibetan mountain snow:temporal patterns from 1980 to 2010

    Get PDF
    The use of snow and ice cores as recorders of environmental contamination is particularly relevant for per- and polyfluoroalky substances (PFASs) given their production history, differing source regions and varied mechanisms driving their global distribution. In a unique study perfluoroalkyl acids (PFAAs) were analyzed in dated snow-cores obtained from high mountain glaciers on the Tibetan Plateau (TP). One snow core was obtained from the Mt Muztagata glacier (accumulation period of 1980–1999), located in western Tibet and a second core from Mt. Zuoqiupo (accumulation period: 1996–2007) located in southeastern Tibet, with fresh surface snow collected near Lake Namco in 2010 (southern Tibet). The higher concentrations of ∑PFAAs were observed in the older Mt Muztagata core and dominated by perfluorooctanesulfonic acid (PFOS) (61.4–346 pg/L) and perfluorooctanoic acid (PFOA) (40.8–243 pg/L), whereas in the Mt Zuoqiupu core the concentrations were lower (e.g., PFOA: 37.8–183 pg/L) with PFOS below detection limits. These differences in PFAA concentrations and composition profile likely reflect the upwind sources affecting the respective sites (e.g., European/central Asian sources for Mt Muztagata and India sources for Mt Zuoqiupu). Perfluorobutanoic acid (PFBA) dominated the recent surface snowpack of Lake Namco which is mainly associated with India sources where the shorter chain volatile PFASs precursors predominate. The use of snow cores in different parts of Tibet provides useful recorders to examine the influence of different PFASs source regions and reflect changing PFAS production/use in the Northern Hemisphere
    • …
    corecore