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The synthesis of a novel hierarchical flower-like NiS via a solvothermal method for the electrochemcial oxidation of H2O2 on a
carbon paste electrode with high catalytic activity for the (MOR) in an alkaline medium has been reported. Novel nickel sulfide
(NiS) hierarchical flower-like structures were characterized by X-ray diffraction, scanning electron microscope, and transmission
electron microscopy. A carbon paste electrode was modified with the as-prepared hierarchical flower-like NiS, resulting in a high
electrocatalytic activity toward the oxidation of H2O2. The NiS-modified electrode was used for H2O2 sensing, which was achieved
over a wide linear range from 0.5 μM to 1.37 mM (I/μA = −0.19025 + 0.06094 C/mM) with a low limit of detection (LOD) of 0.3
μM and a limit of quantitation (LOQ) of 0.8 μM. The hierarchical flower-like NiS also exhibited a high electrocatalytic activity for
the methanol oxidation reaction (MOR) in an alkaline medium with a high tolerance toward the catalyst-poisoning species generated
during the MOR. The MOR proceeded via the direct electrooxidation of methanol on the oxidized NiS surface layer because the
oxidation peak potential of the MOR was more positive than that of the oxidation of NiS.
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In recent years, a variety of metal sulfides nanostructures have
been widely investigated due to their potential applications in en-
ergy storage and conversion devices, light-emitting diodes, photo-
catalytic and electrocatalytic reactions, sensors, thermoelectric de-
vices, and memory devices.1–8 Nickel sulfide (NiS), has been exten-
sively used for dye-sensitized solar cells,9 supercapacitors,10 lithium
ion batteries,11 electrocatalysts12 and photocatalysts13 due to its high
electronic conductivity, low cost, and simple production. Although nu-
merous NiS compounds have been prepared using various morpholo-
gies such as: nanoframes,14 hollow spheres,15 core-shell structure,16

nanorods,17 nanoflake arrays,18 nanosheets,19 urchin-like micro/nano-
structures,20 the synthesis of hierarchical flower-like NiS has been
limited.21–23 In this work, we report the facile synthesis of NiS hi-
erarchical flower-like nanostructures using a solvothermal route. The
electrocatalytic performances of these NiS nanostructures were also
investigated.

Hydrogen peroxide (H2O2) has attracted a great attention due
to its importance as a reactive oxygen species and its involve-
ment in chemical, biological, food-processing, medical, diagnos-
tic, and environmental related fields.24,25 Due to its key role, the
determination of H2O2 have arisen a great interest, hence many
approaches have been developed, such as optical, titration-based,
and electrochemical methods.26–28 Among these methods, electro-
chemical analysis is particularly promising due to its many advan-
tages such as low cost, easy to manipulate and fast analysis.29 Al-
though many nanostructures-based electrocatalysts such as prussian-
blue-grafted carbon nanotube/poly (4-vinylpyridine) composites,30

gold nanostars,31 dumbbell-like PtPd−Fe3O4,32 hierarchical hollow
mesoporous CuO microspheres,33 mesoporous Co3O4 nanobelts and
nano-necklaces,34 Co3O4 nanowires supported on 3D N-doped car-
bon foam35 have been employed for this purpose, the prepara-
tion of the hierarchical nanostructure with high surface area is
still a challenge for fabricating an efficient sensing platform for
H2O2.

Pt-based materials are currently the most common electrocata-
lysts used as anodes in direct methanol fuel cells (DMFC) due to
their high electrocatalytic activities.36,37 However, Pt suffers from a
high price and tendency to be poisoned by CO that occupies the
active sites of the Pt via adsorption and block the transportation of
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methanol in its oxidation, limiting its utility in commercial applica-
tions. Therefore, the development of cost effective catalysts is highly
desirable. Ni-based compounds are interesting alternatives to Pt due
to their relative low costs and high electrocatalytic activity, which
have attracted considerable recent attention38,39 due to the Ni (II)/Ni
(III) redox reactions.40 To the best of our knowledge, this is the first
time that the synthesis of a novel hierarchical flower-like NiS via a
solvothermal method for the electrochemical detection of H2O2 on
a carbon paste electrode with high catalytic activity for the MOR in
an alkaline medium has been reported. The high catalytic activity
for the MOR of the NiS nanostructures as an effective electrocat-
alysts in an alkaline medium opens a new potential application in
DMFC.

Experimental

Chemicals and solutions.—Nickel (II) acetylacetonate (99.99%)
and sulfur powder (99%) were purchased from Alfa Co. and Aladdin
Co., USA. Tetrabutylammonium bromide, n-hexane, triton X-100,
dimethylacetamide, ethanol, and diethylamine were acquired from
Sinopharm Chemical Reagent Co., Ltd, China. H2O2 (30%) was pur-
chased from Sigma-Aldrich. All other chemicals were of analytical
reagent grade, and doubly distilled water was used for solution prepa-
ration.

Apparatus.—The phase of the hierarchical flower-like NiS struc-
ture was determined on a Rigaku D/max2550VB X-ray diffractome-
ter (XRD). Scanning electron microscopy (SEM) images were ob-
tained with a Hitachi SU8010 scanning electron microscope. Trans-
mission electron microscopy (TEM) images and high-resolution TEM
(HRTEM) images were obtained on an FEI Tecnai G2 F20 transmis-
sion electron microscope at an accelerating voltage of 200 kV. The
specific surface areas of the samples were measured by nitrogen ad-
sorption on a Gemini VII 2390 Analyzer at 77 K using the volumet-
ric method. A CHI 842C electrochemical workstation (Austin, TX,
USA) was used for all electrochemical experiments with a conven-
tional three-electrode system, which included a NiS-modified carbon
paste electrode (CPE) as the working electrode, a platinum coil as an
auxiliary electrode, and an Ag/AgCl (saturated KCl) as the reference
electrode.
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Figure 1. (a) Low-magnification and (b) high-magnification SEM image of
NiS prepared at 200◦C for 12 h. (c) TEM image of flower-like NiS nanostruc-
tures. (d) HRTEM image of a single NiS nanoflake.

Preparation of hierarchical flower-like NiS.—In a typical proce-
dure, Nickel (II) acetylacetonate (0.1 mmol) and tetrabutylammonium
bromide (0.15 mmol) was accurated weighted into a 20 mL teflon
liner, and then dimethylacetamide (4.0 mL), ethanol (5.0 mL), H2O
(1.0 mL), Triton X-100 (1.0 mL), hexane (0.5 mL), and diethylamine
(50 μL) was sucessively injected to form a micellar system under
vigorous stirring. After stirring for 5 min, excessive sulfur power (4.8
mg) was then added to ensure the loss of sulfur during the reaction,
and the mixture was stirred for 20 min. This mixture was transferred
to a stainless steel autoclave, which was sealed, heated to 200◦C, and
maintained at this temperature for 12 h. The autoclave was cooled to
room temperature, the upper layer yellow liquid has obvious stratifi-
cation with the black solid deposited on the bottom. The liquid was
pour away and the products were washed by ethanol and separated by
centrifugation at 8000 rpm for 10 min, which ensured the full collec-
tion of the product. The black NiS powder can be ensured by being
vacuum dried at 60◦C for 1 h.

Fabrication of NiS modified CPE.—A carbon paste containing
of 75:25 graphite powder/liquid paraffin, was packed firmly into one
end of a glass tube (1.8 mm inner diameter) to fabiricate the bare

CPE. Electronic connection to the CPE was made via a copper wire.
To prepare NiS suspension, 2 mg NiS powder was ultrasonically
dispersed in water for 10 minutes. For electrode modification, 5.0 μL
of a NiS suspension (2 mg/mL) was drop-coated onto the bare CPE,
which was then dried in an ambient atmosphere.

Results and Discussion

Characterization of the hierarchical flower-like NiS nano-
structures.—Figs. 1a, 1b shows the typical SEM images of a NiS
sample at different magnifications. Hierarchical flower-like structures
with sizes ranging from 300 to 500 nm are clearly visible in the low-
magnification SEM image. Meanwhile, the high-magnification image
(Fig. 1b) reveals that these aggregates are composed of many uni-
formly distributed nanosheets with the thicknesses of ca. 18 nm. The
structure of the flower-like NiS was further investigated by TEM (Fig.
1c) and HRTEM (Fig. 1d). According to these TEM images, the NiS
product consisted of multiple nanosheets. The distance of the lattice
finger is 0.197 nm, which corresponds to the d spacing of the (102)
face of a hexagonal NiS phase (Fig. 1d).

Fig. 2a shows a typical XRD pattern of the NiS sample. The XRD
pattern reveals the sample is highly crystalline. The four diffraction
peaks at 2θ = 30.2◦, 34.7◦, 46.0◦, and 53.5◦ can be indexed to the
(100), (101), (102), and (110) planes, respectively, of the hexagonal
NiS structure (JCPDS No.02-1280). No other impurity peaks were
detected, indicating the high purity of the as-prepared NiS sample.
An analysis of nitrogen adsorption isotherms (Fig. 2b) based on the
Brunauer-Emmet-Teller theory indicated that the hierarchical flower-
like NiS had a high surface area of 26.67 m2/g and pore diameters of
∼65 nm (inset to Fig. 2b).

Non-enzymatic H2O2 detection.—Next, we investigate the elec-
troanalytical sensing of H2O2 using cyclic voltammetry. Fig. 3 shows
typical cyclic voltammograms (CVs) recorded with a NiS-modified
CPE in 0.1 M NaOH in the absence (dotted line) and presence (solid
line) of 5 mM H2O2 over the potential range from −0.8 V to 0.8 V
(vs. Ag/AgCl). A pair of redox peaks was observed at 0.5 V and 0.4 V,
respectively. These peaks were attributed to the following redox reac-
tions of NiS in an alkaline medium:41

NiS + OH− = NiSOH + e−

Accompanied by the addition of H2O2 to the solution, peaks for
the oxidation and reduction of H2O2 appeared (solid line, Fig. 3), with
an oxidation potential of 0.5 V and reduction potential of 0.6 V, re-
spectively, suggesting that NiS was electrocatalytically active toward
H2O2. The excellent electrocatalytic activity of the NiS-modified CPE

Figure 2. (a) XRD patterns of hierarchical flower-like NiS. Vertical lines (bottom) represent the typical pattern of the hexagonal NiS phase. (b) Nitrogen
adsorption-desorption isotherm for the hierarchical flower-like NiS structures. Inset: BJH pore size distribution plot.
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Figure 3. Typical CVs acquired at a NiS-modified CPE in 0.1 M NaOH in the
absence (dotted line) and presence (solid line) of 5 mM H2O2 at a scan rate of
0.1 V/s. Arrow indicates the initial scan direction.

was also used for the amperometric detection of H2O2 (Fig. 4). H2O2

was successively injected into a stirred 0.1 M NaOH at an applied
potential of 0.5 V. The measured current increased with H2O2 con-
centrations, and a linear response was observed from 0.5 μM to 1.37
mM (I/μA = −0.19025 + 0.06094 C/mM) with a low limit of detec-
tion (LOD) of 0.3 μM and a limit of quantitation (LOQ) of 0.8 μM.
The H2O2 detection characteristics of the NiS-modified electrode and
some other modified electrodes are compared in Table I. Overall, the
NiS-modified electrode displayed a wider linear range and lower limit
of detection for H2O2 than the other electrodes.

Reproducibility and repeatability tests of the NiS-modified elec-
trodes revealed a relative standard deviation of 5.2% for ten successive
measurements with the same electrode and 6.8% for measurements

Figure 4. Amperometric response of the NiS-modified CPE to the successive
addition of H2O2 in stirred 0.1 M NaOH at an applied potential of 0.5 V.
Insets: magnified amperometric response to low H2O2 concentrations (A) and
calibration curve for the steady-state current upon the addition of different
H2O2 concentrations (B).

Table I. Comparative characteristics of the NiS-modified electrode
and some other materials modified electrodes for the detection of
H2O2 at an anodic potential.

Electrode
material

Detection
potential

Linear
range/mM LOD/μM Ref.

Pt0.5Au0.5@C 0.3 V (Ag/AgCl) 0.007–6.5 2.4 42
Co3O4
nanoparticles

0.39 V(Ag/AgCl) 0.0004–2.2 0.105 43

MnOOH 0.45 V(Ag/AgCl) 0.02–9.67 3.2 44
Co3O4 0.5 V(Ag/AgCl) 0.005–0.35 0.7 45
PtIr
nanoparticles

0.25 V(SCE) 0.1 –100 5 46

oxo-
ruthenium(III)

0.56 V (SCE) 0.01–0.25 47

MnO2/Au 0.7 V (SCE) 0.005–10 1 48
PtNi 0.7 V (RHE) 0.01–0.18 1 49
NiS 0.5 V (Ag/AgCl) 0.0005–1.37 0.3 This

work

with five different electrodes, illustrating the acceptable reproducibil-
ities and repeatabilities of the electrodes. The long-term stability of
the NiS-modified electrode was also investigated under continuous
operation. After 800 s of continuous operation, 88% of the initial cur-
rent response was maintained. After being stored in air for two weeks,
the electrode had an 8% decrease in current response, indicating its
relatively high long-term stability.

The presented method was applied for the detection of H2O2 in
disinfectant sample (2.7–3.3%). The disinfectant sample was diluted
by water with a ratio of 1:30, after which 6.0 μL of the diluted sample
solution was injected into the stirring 0.1 M NaOH solution (8 mL) and
detected by amperometric method. The value of H2O2 concentration
was found to be 2.9%, which was in accord with the value that obtained
by permanganimetric method (3.1%).

Methanol electrooxidation.—The scan-rate dependence of the
CVs of the NiS-modified CPE was also investigated, as shown in Fig.
5. Well-defined redox peaks were clearly observed at the different
scan rate from 0.01 to 0.5 V/s and the currents increased proportion-
ally with scan rate (Iox (μA) = 35.35 + 355.67 υ; Ired (μA) = −1.97
– 115.72 υ), indicating that the processes were surface controlled
according to the following Eqs. 1.

NiS + OH− = NiSOH + e− [1]

The NiS-modified CPE was also used for the electrocatalytic ox-
idation of methanol. Fig. 6 shows CVs of the NiS-modified CPE in

Figure 5. CVs of a NiS-modified CPE in 1.0 M KOH at different scan rates
from 0.01 to 0.5 V/s. Arrow indicates the initial scan direction.
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Figure 6. CVs of a NiS-modified CPE in 1.0 M KOH in the absence (dotted
line) and presence (solid line) of 0.6 M methanol at a scan rate of 50 mV/s.
Arrow indicates the initial scan direction.

1.0 M KOH in the absence (dotted line) and presence (solid line) of
0.6 M methanol at a scan rate of 50 mV/s. As shown in Fig. 6, no
enhanced oxidation current appeared over the potential arrange before
the oxidation peak potential of Ni (II)/Ni (III) (0.5 V) according to
the following Eqs. 1. An obvious oxidation current was observed for
MOR at the NiS-modified electrode when the potential was positive
than 0.52 V, suggesting that direct electro-oxidation of methanol oc-
curs after the oxidation of Ni (II) in which Ni (III) is used as an active
surface for methanol oxidation. Similar oxidation currents were also
observed during the reverse scan, these currents were ascribed to the
further oxidation of methanol or other MOR intermediates. The for-
ward and reverse oxidation currents nearly overlapped, suggesting that
the NiS-modified electrode exhibited a high electrocatalytic activity
for the MOR and a high tolerance for poisoning species generated by
the MOR.

The CVs shown in Fig. 7, which were recorded at a scan rate of
50 mV/s, reveals the influence of the methanol concentration on the
electrocatalytic activity of the NiS-modified. The anodic currents in-
crease with the methanol concentration, suggesting that the oxidation

Figure 7. CVs of a NiS-modified CPE in 1.0 M KOH in the presence of
different concentrations of methanol (0.05, 0.075, 0.10, 0.20, 0.40, 0.60, and
0.80 M) at a scan rate of 50 mV/s. Arrow indicates the initial scan direction.
Inset (A): The magnified CVs response at the potential range of 0.4–0.6 V. Inset:
calibration plot of the oxidation peak current vs. methanol concentration. The
current values are measured at 0.64 V.

of methanol exhibited a typical electrocatalytic response. Clearly, the
anodic peak current in the forward sweep was proportional to the con-
centration of methanol. Another oxidation current was also observed
in the reverse scan. This current also increased with the methanol con-
centration, suggesting that the methanol and other MOR intermediates
that were partially oxidized in the forward scan were further oxidized
during the reverse scan. In addition, the oxidation peak potential of the
MOR (∼0.52 V) was more positive than that of the oxidation of NiS
(∼0.5 V), indicating that the oxidation of methanol occurred through
the direct electrooxidation on the Ni (III) surface via the following
processes:50,51

Ni3+-methanol = Ni3+-intermediate + e− [2]

Ni3+-intermediate = Ni3+-products + e− [3]

Conclusions

Hierarchical flower-like NiS nanostructures were fabricated by a
simple solvothermal method. The as-prepared NiS flower-like nanos-
tructures were used for enzyme-free H2O2 sensing and methanol elec-
trooxidation in an alkaline medium. The H2O2 sensor was highly re-
producible and had an excellent electrocatalytic activity and a wide
linear range from 0.5 μM to 1.37 mM. The hierarchical flower-like
NiS also exhibited a high electrocatalytic activity for the methanol
oxidation reaction (MOR) in an alkaline medium with a high toler-
ance toward the catalyst-poisoning species generated during the MOR.
The MOR proceeded via the direct electrooxidation of methanol on
the oxidized NiS surface layer.
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