102 research outputs found

    Dust emissions from undisturbed and disturbed soils: effects of off-road military vehicles

    Get PDF
    Master of ScienceDepartment of Biological & Agricultural EngineeringRonaldo G. MaghirangMilitary training lands can be significant sources of fugitive dust emissions due to wind erosion. This study was conducted to determine dust emission potential of soils due to wind erosion as affected by off-road military vehicle disturbance. Multi-pass traffic experiments using two types of vehicles (i.e., wheeled and tracked) were conducted on six soil textures at four military training facilities: Fort Riley, KS; Fort Benning, GA; Yakima Training Center, WA; and White Sands Missile Range (WSMR), NM. Prior to and after the preselected number of vehicle passes, soil samples at three locations were collected with minimum disturbance into trays. Adjacent to the location where tray samples were collected, a Portable In-Situ Wind Erosion Lab (PI-SWERL) was used to measure dust emission potential. The tray samples were tested in a laboratory wind tunnel (with sand abrader) for dust emission potential using a GRIMM aerosol spectrometer and gravimetric method with filters. Comparison of the PI-SWERL (with DustTrak™ dust monitor) and wind tunnel (with GRIMM aerosol spectrometer) measurement results showed significant difference in measured values but high correlation, particularly for soils with high sand content. Wind tunnel tests results showed that sampling locations significantly affected dust emissions for the tracked vehicles but not for the light-wheeled and heavy-wheeled vehicles. Also, soil texture, number of vehicle passes, and vehicle type significantly affected dust emissions. For the light-wheeled vehicles, dust emissions increased as the number of vehicle passes increased. From undisturbed conditions to 10 vehicle passes, there was a significant (P<0.05) increase in dust emissions (297%) on average for all light-wheeled vehicle tests. From 10 to 25 passes and 25 to 50 passes, an additional 52% and 62% increments were observed. For the tracked vehicle, for the straight section sampling location, dust emission increased as the number of vehicle passes increased. However, for the curve section, dust emissions at any level of pass were significantly higher than initial condition; beyond the first pass, no significant increase was observed

    Bioconversion of industrial hemp biomass for bioethanol production: A review

    Get PDF
    Industrial hemp (Cannabis sativa L.) with robust drought-resistant features has excellent agronomic and pharmaceutical characteristics. As the federal prohibition on hemp cultivation was lifted, its valorization in various aspects is highly required. This review aims to summarize the potential of hemp biomass for bioethanol production. Chemical compositions of hemp biomass were evaluated as compared with those of corn fiber, corn stover, and sorghum bagasse. Several representative pretreatment technologies used for hemp biomass were summarized in terms of sugar recoveries, lignin removal, and sugar and ethanol yields. This review presents numerous technical barriers attributed to insufficient fermentable sugar and ethanol concentration during the conversion processes. Also, innovative research approaches (pretreatment optimization, co-fermentation of hexose and pentose, increasing potential sugar loading) in overcoming these challenges were critically reviewed. This review would promote future research on the utilization of hemp biomass for biofuel applications

    Effect of genotype on the physicochemical, nutritional, and antioxidant properties of hempseed

    Get PDF
    Hempseed products has been used as nutraceutical supplements and pharmaceutical products. However, hempseed has been underutilized as a food crop for human consumption. To fill the gap of limited knowledge of the variation of hempseed for food consumption, thirteen hemp varieties were selected to evaluate the effect of genotype on the physicochemical, nutritional, and antioxidant properties of hempseed. The tested hempseed contains 26.48–32.03% crude protein with average of 28.48%, 28.03–33.23% crude oil with average of 29.54%, 28.78–36.55% crude fiber with average of 33.49%, and 5.43%–6.32% ash with average of 5.89. Average test weight of 36.85 lbs/bu was relatively low compared to the standard test weight of 44 lbs/bu. Hempseed oil contained high portions of about 80% unsaturated fatty acids such as linoleic and α-linolenic acid. The DPPH scavenging activities varied greatly (0.37–28.78%) for the hydrolysates from different hempseed varieties. This study provides comprehensive understanding of the nutritional value of hempseed for human food and potential of a new crop in agricultural food system

    Exposure to arsenic during pregnancy and newborn mitochondrial DNA copy number: A birth cohort study in Wuhan, China

    Get PDF
    This is an accepted manuscript of an article published by Elsevier in Chemosphere on 11/11/2019, available online: https://www.sciencedirect.com/science/article/abs/pii/S0045653519325755?via%3Dihub The accepted version of the publication may differ from the final published version.Background: Arsenic (As) is a widely distributed environmental chemical with potentially different toxicities. However, little is known about the impact of maternal As exposure on newborn mitochondrial DNA copy number (mtDNAcn), which may lie on the pathway linking As exposure to adverse health impacts. Objectives: We aimed to explore whether maternal As exposure was associated with newborn mtDNAcn. Methods: We conducted a birth cohort study of 762 mother-infant pairs in Wuhan, China, 2013-2015. Cord blood mtDNAcn was determined using qPCR. Maternal urinary As levels in each trimester were quantified by ICP-MS. Multiple informant models were used to examine the associations of repeated urinary As levels with cord blood mtDNAcn. Results: The median urinary As levels in the first, second, and third trimesters were 17.2 g/L, 16.0 g/L and 17.0 g/L respectively. In the multivariate model, each doubling increase in the first-trimester urinary As level was associated with a 6.6% (95% CI: -12.4%, -0.5%) decrease in cord blood mtDNAcn. The highest versus lowest quintile of first-trimester urinary As level was related to a 19.0% (95% CI: -32.9%, -2.2%) lower cord blood mtDNAcn. There was significant association of urinary As levels in the second and third trimesters with cord blood mtDNAcn. The inverse relationship between first-trimester urinary As level and cord blood mtDNAcn was more pronounced among female infants. Conclusions: First-trimester As exposure was associated with decreased cord blood mtDNAcn. The potential health impacts of decreased mtDNAcn in early life need to be further clarified

    Rural-urban differences of neonatal mortality in a poorly developed province of China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The influence of rural-urban disparities in children's health on neonatal death in disadvantaged areas of China is poorly understood. In this study of rural and urban populations in Gansu province, a disadvantaged province of China, we describe the characteristics and mortality of newborn infants and evaluated rural-urban differences of neonatal death.</p> <p>Methods</p> <p>We analyzed all neonatal deaths in the data from the Surveillance System of Child Death in Gansu Province, China from 2004 to 2009. We calculated all-cause neonatal mortality rates (NMR) and cause-specific death rates for infants born to rural or urban mothers during 2004-09. Rural-urban classifications were determined based on the residence registry system of China. Chi-square tests were used to compare differences of infant characteristics and cause-specific deaths by rural-urban maternal residence.</p> <p>Results</p> <p>Overall, NMR fell in both rural and urban populations during 2004-09. Average NMR for rural and urban populations was 17.8 and 7.5 per 1000 live births, respectively. For both rural and urban newborn infants, the four leading causes of death were birth asphyxia, preterm or low birth weight, congenital malformation, and pneumonia. Each cause-specific death rate was higher in rural infants than in urban infants. More rural than urban neonates died out of hospital or did not receive medical care before death.</p> <p>Conclusions</p> <p>Neonatal mortality declined dramatically both in urban and rural groups in Gansu province during 2004-09. However, profound disparities persisted between rural and urban populations. Strategies that address inequalities of accessibility and quality of health care are necessary to improve neonatal health in rural settings in China.</p

    Integrated bioprocess to boost cellulosic bioethanol titers and yields

    Get PDF
    Doctor of PhilosophyDepartment of Biological & Agricultural EngineeringDonghai WangAmong potential alternative liquid fuels, bioethanol is the widest utilized transportation fuels and mainly made from grains. Cellulosic biofuels provide environmental benefits not available from grain or sugar-based biofuels and are considered as a solid foundation to meet transportation fuels needs in a low-carbon economy, albeit with electrified vehicles and other technical advances. The objective of this research was to develop and optimize various bioprocessing units to boost cellulosic bioethanol titers and yields in order to accelerate the commercialization of cellulosic bioethanol production. The results showed high-solids biomass bioconversion (12%, w/v) was inefficient in the laboratory rotary shaker. However, a horizontal reactor with good mixing was effective for high solids loading (20%, w/v), yielding 75 g/L of glucose. To achieve the minimal economical ethanol distillation requirement of 40 g/L, integrated bioprocesses were conducted to boost ethanol titers and yields through co-fermentation of starchy grain and cellulosic biomass. The maximum ethanol concentration (68.7 g/L) was achieved at the corn flour and hydrothermal-treated corn stover ratio of 12:12 using raw starch granular enzyme with the ethanol yield of 86.0%. Co-fermentation of starchy substrate with hydrolysate liquor from saccharified biomass was able to significantly enhance ethanol concentration and reduce energy cost for distillation without sacrificing ethanol yields. These results indicated integration of first and second generation ethanol production could significantly accelerate the commercialization of cellulosic biofuel production. Novel technology, modified simultaneous saccharification and fermentation, was firstly established to enhance ethanol titers and yields, which achieved high ethanol titers of 72.3 g/L at high biomass loadings of 30% (w/v) with 70.0% ethanol yield

    Deicing Property of Asphalt Mixture Containing Steel Wool Fiber by Electromagnetic Induction Heating

    No full text
    Snow and ice is one of the main problems affecting road safety in winter. In order to effectively remove the snow and ice of covering the pavement, the deicing property of asphalt mixture pavement containing steel wool fiber was introduced and investigated by electromagnetic induction heating. Based on the deicing mechanism of Faraday’s law of electromagnetic induction and the Joule’s law, the influences factors affecting deicing efficiency, including length and content of steel wool fiber, ice thickness, output current and ambient temperature were analyzed. Meanwhile, the grey correlation entropy analysis and t-test between the average deicing rate and various influencing factors were explored. BP neural network prediction models of predicting change laws of average deicing rate under different influencing factors were established. The results indicate that the average deicing rate of asphalt mixture adding steel wool fiber increases with the increase of length and content of steel wool fiber. The influence degree of each factor for the average deicing rate is in order as follows: steel wool fiber content, steel wool fiber length, output current, ambient temperature and ice thickness. BP neural network has high accuracy in predicting average deicing rate under various influencing factors and the better simulation results. It is of significance to apply the technology of “electromagnetic induction heating &amp; steel wool fiber” to the efficient deicing of asphalt pavement
    corecore