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Abstract 1 

Industrial hemp (Cannabis sativa L.) with robust drought-resistant features has excellent 2 

agronomic and pharmaceutical characteristics. As the federal prohibition on hemp cultivation was 3 

lifted, its valorization in various aspects is highly required. This review aims to summarize the 4 

potential of hemp biomass for bioethanol production. Chemical compositions of hemp biomass 5 

were evaluated as compared with those of corn fiber, corn stover, and sorghum bagasse. Several 6 

representative pretreatment technologies used for hemp biomass were summarized in terms of 7 

sugar recoveries, lignin removal, and sugar and ethanol yields. This review presents numerous 8 

technical barriers attributed to insufficient fermentable sugar and ethanol concentration during the 9 

conversion processes. Also, innovative research approaches (pretreatment optimization, co-10 

fermentation of hexose and pentose, increasing potential sugar loading) in overcoming these 11 

challenges were critically reviewed. This review would promote future research on the utilization 12 

of hemp biomass for biofuel applications.  13 

Keywords: Industrial hemp; Lignocellulosic biomass; Pretreatment; Bioethanol production  14 
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1. Introduction 1 

Industrial hemp (Cannabis sativa L.) was cultivated in temperate Eurasia for millennia and 2 

was first brought to North America in 1606 [1]. Hemp has excellent agronomic, food, and 3 

pharmaceutical properties with various applications in industrial fields [2]. In decades, several 4 

nations and jurisdictions prohibited the cultivation and processing of industrial hemp due to its 5 

principal intoxicating constituent (delta-9 tetrahydrocannabinol (THC)) [3]. The 2018 US farm bill 6 

approved industrial hemp varieties that could be cultivated, harvested, and processed with a THC 7 

threshold below 0.3% [4]. In the US, hemp production is legal in 46 states except from Idaho, 8 

Mississippi, New Hampshire, and South Dakota [4]. As the federal prohibition on hemp cultivation 9 

is gradually unbundled, its valorization in various aspects is highly required. Industrial hemp 10 

produces both biomass and seeds. Traditionally, hemp biomass's economic value is its fiber-rich 11 

stem, which can be used to manufacture fabrics, clothes, and papers [3, 5]. While its seeds with 12 

less than 0.3% THC has excellent potential for food and medical applications due to its nutritional 13 

and pharmaceutical values [6].  14 

In this review, the primary focus is the potential of hemp biomass for bioethanol production. 15 

The biomass yield and chemical compositions of industrial hemp were summarized and compared 16 

with other biomass including corn fiber, corn stover, and sorghum bagasse. Then, representative 17 

pretreatment technologies used for hemp biomass to enhance the sugar recoveries, lignin removal, 18 

sugar and ethanol yields are discussed. This review presents numerous technical barriers attributed 19 



 

4 

 

to insufficient fermentable sugar and ethanol concentration during the conversion processes. 1 

Finally, innovative research progress (pretreatment optimation, co-fermentation of glucose and 2 

xylose, increasing potential sugar loading) in overcoming these challenges were critically reviewed. 3 

It is believed that this review would help scientific community and related industry to understand 4 

the potential and barriers of hemp biomass for bioethanol application and promoting future research 5 

on the utilization of hemp biomass for biofuel production. 6 

2. Hemp biomass 7 

2.1. Biomass yield 8 

Hemp (Cannabis sativa L.) is an herbaceous annual belonging to the family Cannabinaceae. It 9 

can be cultivated under various climatic conditions due to its resilience to the external environment 10 

[15]. In the last three decades, the commercial cultivation of industrial hemp was concentrated in 11 

Europe (Table 1). Early European varieties of hemp can be grouped into northern and southern 12 

types with distinct characteristics. Northern hemp is characterized by rapid early growth, early 13 

flowering, sturdy branching, and high seed yield, whereas southern types tend to be slow-growing, 14 

tall, late flowering, and high fiber quality and yield. As shown in Table 1, significant variation in 15 

the hemp biomass yields (3.4-31.2 t/ha) was observed, mainly due to the environmental conditions, 16 

fertilization applied, plant density, and genotypes [7-10, 12-14]. For example, Campiglia et al. [7] 17 

reported that hemp biomass yield ranging from 3.4 to 8.0 t/ha was positively correlated with the 18 

vegetative phase's duration. They also found that biomass yield increased as plant density increased. 19 
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Ascrizzi et al. [13] found that the crops harvested in Santa Luce showed higher total dry yield and 1 

stem yield than those harvested in Cascina, probably due to its greater plant density and higher soil 2 

water holding capacity. In addition, Adamovics et al. [16] reported notable variation in biomass 3 

yields between cultivars attributed to the differences in genotypes and found that Futura variety 4 

achieved the highest biomass yield of 21.3 t/ha.  5 

2.2. Botanical structure 6 

Hemp stem consists of several morphological layers (Fig. 1). The two essential stem fiber, 7 

phloem (bast) fiber and xylem (wood) fiber, occur in the hemp stem. The bast fiber (epidermis and 8 

phloem layers) contains high cellulose (67-78%) and low lignin (2.9-13%) [18, 19], whereas the 9 

woody core (xylem and pith layers) contains about 40% cellulose and 17% lignin [20]. Removal 10 

of the cortex by "retting" is a crucial initial step in fiber extraction. Internal to the cortex is the 11 

primary phloem fibers that are amalgamated into rope-like, glued together bundles that occurred in 12 

the outermost part of the stem, which is the principal fiber of interest. The lignified xylem ring is 13 

primarily attributed to the recalcitrance of hemp biomass toward enzymatic and microbial attack 14 

[21, 22]. Also, the woody tissue and remnants of pith in the central part of stem consist of the 15 

"hurds" which is the primary source of strength. 16 

2.3 Chemical composition 17 

The chemical composition of hemp biomass compared with corn fiber, corn stover, and 18 

sorghum bagasse is shown in Table 2. It was reported that compositional variation among the same 19 
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varieties was mainly attributed to cultivation, fertilization, and climate conditions [14, 62, 63]. 1 

Genotype played an important role in influencing on the chemical composition of hemp biomass: 2 

Zhao et al. [42] reported that SS Beta variety contained higher cellulose (42.7%) but lower lignin 3 

(15.0%) than Tygra (40.7% and 15.7%); Das et al. [64] found significant variation in glucan (43.8-4 

50.1%), xylan (11.6-14.2%), and lignin (15.4-29.4%) among the 11 hemp cultivars. Cellulose (D-5 

glucose polymer) condenses through β (1-4) glycosidic bonds [65]. Strong hydrogen bonds 6 

between and within cellulose strands are ascribed to high crystallinity [42]. Hemp biomass contains 7 

relatively higher cellulose (36.5-75.6%) than corn fiber (13.0-18.0%), corn stover (31.0-41.2%), 8 

and sorghum bagasse (35.5-41.1%) (Table 2). The high cellulose content in hemp biomass would 9 

benefit the fermentable sugar concentration and final bioethanol yield. Hemicellulose (D-pentose 10 

polymer) as heterogeneous polysaccharides mainly contains a β-D-xylose monomer. Table 2 also 11 

showed the hemicellulose contents of hemp biomass (10.1-32.8%), corn fiber (35.0-45.3%), corn 12 

stover (16.5-22.8%), and sorghum bagasse (18.4-25.9%). Compared to corn fiber, corn stover, and 13 

sorghum biomass, hemp biomass had a larger range and variation in hemicellulose. Lignin is 14 

randomly methoxylated and incorporated by lignols (p-coumaryl alcohol, coniferyl alcohol, and 15 

sinapyl alcohol). The lignin content of hemp biomass ranged from 8.0 to 22.9%, which is relatively 16 

lower than corn stover from 12.3 to 25.4% and sorghum biomass from 15.4 to 24.5% but higher 17 

than corn fiber from 1.3 to 18.0% (Table 2). Low lignin content in biomass would benefit the 18 

bioconversion process due to the weak recalcitrance of biomass [42, 66]. 19 
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3. Sugar and ethanol production 1 

The production of sugar and ethanol from cellulosic biomass still faces significant technical 2 

challenges. Success depends mainly upon the physical and chemical properties of the biomass, 3 

pretreatment methods, effective enzyme systems, and fermentation microorganisms. In this section, 4 

the review focuses on hemp biomass pretreatment, enzymatic hydrolysis, and ethanol fermentation. 5 

3.1. Biomass pretreatment 6 

The physicochemical crosslinks among macro-polymers in hemp biomass are resistant to 7 

enzymatic attack and microbial digestion. Pretreatment is an essential element to overcome this 8 

barrier by cleaving chemical bonds (Fig. 2). Pretreatment has a function to disrupt and solubilize 9 

the hemicellulose and lignin, making cellulose amenable to enzymes and strains. Sugar recoveries 10 

and lignin removal are essential indicators for the selection of optimal pretreatment conditions [42, 11 

66]. The effects of different pretreatment methods on chemical composition, sugar recoveries, and 12 

delignification of hemp biomass were summarized in Table 3.  13 

Steam explosion pretreatment: The steam explosion has been attracted considerable attention 14 

for hemp biomass pretreatment without the addition of chemicals [33, 68, 72-74]. Barta et al. [25] 15 

reported glucan (> 82%) and xylan (18-66%) recoveries as well as low lignin removal. The 16 

pretreatment was conducted at high temperatures (200-230℃) and caused the solubilization of 17 

most hemicellulose and partial cellulose. High decomposition of hemicellulose can result in 18 

increased glucan content in pretreated biomass and further sugar degradation as inhibitor formation. 19 
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For example, Pakarinen et al. [39] observed that glucan content in biomass increased from 46.1 to 1 

69.6% as hemicellulose decreased from 9.5 to 5.5%. Kreuger et al. [73] reported that 0.8 g 2 

hydroxymethylfurfural (HMF) and 2.5 g furfural per 794 g dried hemp stem formed in the 3 

hydrolysates. The low delignification was mainly due to derivatives such as furans and insoluble 4 

products from the degradation of hemicellulose that could interact with the residual lignin 5 

components to form a pseudo-lignin complex [75]. In order to moderate pretreatment temperature 6 

and enhance sugar yield, SO2 and H2SO4 were used to assist with the steam explosion [21, 35, 68]. 7 

Among them, Kuglarz et al. [21] investigated the steam explosion with the addition of H2SO4 (0.5-8 

2.0%) at 140-180 ℃ and observed that glucan (> 95%) and xylan (54-56%) were recovered. 9 

Besides, Semhaoui et al. [35] observed that steam with H2SO4 pretreatment increased surface area 10 

and crystallinity of hemp biomass. However, acids impregnation resulted in large amounts of 11 

inhibitor (HMF and furfural) formation in hydrolysates [21, 35, 68], as shown in Table 3. Thus 12 

multiple water washing is needed for detoxification after steam explosion pretreatment.  13 

Acid pretreatment: Dilute acid pretreatment as an industrialized method has been extensively 14 

used for enhancing sugar conversion efficiencies of hemp biomass. Among dilute acid pretreatment, 15 

H2SO4 (0.5-3.0%) was commonly applied to pretreat hemp biomass at 150-180 °C for 10-20 min 16 

[23, 24, 28]. During pretreatment, a high proportion of hemicellulose and partial cellulose was 17 

solubilized into slurries, resulting in some sugar loss and inhibitor formation [28, 76-78], as shown 18 

in Table 3. For instance, Kuglarz et al. [23] conducted the dilute acid pretreatment at 180 °C with 19 

H2SO4 addition (1-1.5% (w/v)) and observed glucan (> 95%) and xylan (41-51%) recoveries with 20 
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35-41% of lignin removal. Gunnarsson et al. [24] concluded that H2SO4 (1% and 2%) pretreatment 1 

at 180 °C resulted in glucan (87-95%) and xylan (11-22%) recoveries but caused HMF (0.15-0.35 2 

g/L) and furfural (0.10-0.25 g/L) formation. 3 

Alkaline pretreatment: Alkaline pretreatment could cleave ester and ether bonds between 4 

lignin and cellulose as well as hemicellulose, thus increasing cellulosic accessibility to enzymes. 5 

NaOH is mainly employed to pretreat hemp biomass [24, 32, 39, 40]. During NaOH pretreatment, 6 

hydroxide ion (OH-) can neutralize with released acids from the decomposition of cellulose and 7 

hemicellulose, thus reducing sugar degradation caused by the catalysis of hydrogen ion (H+) (Table 8 

3). For example, Gunnarsson et al. [24] conducted alkaline (1 and 3%) pretreatment at 121 °C for 9 

1 h and obtained glucan (> 96%) and xylan (> 55%) recoveries without inhibitor formation. In 10 

other studies, Wawro et al. [32] reported that NaOH (2%) pretreatment at 90 °C for 5 h increased 11 

cellulose content from 50.82 to 62.70% and decreased hemicellulose from 27.79 to 20.16% in solid. 12 

Stevulova et al. [40] soaked hemp hurds into 1.6 mol/L NaOH solution for 48 h and observed the 13 

depolymerization of cellulose. In addition, Gümüşkaya and Usta [71] concluded that alkali sulfite 14 

pretreatment at 140-200 ℃ for 60-150 min increased the crystallite size of cellulose.  15 

Other pretreatments: Oxidation reagents are generally utilized in pulp bleaching because 16 

radicals released from oxidation reagents can significantly disrupt and remove lignin. Gunnarsson 17 

et al. [24] reported that H2O2 (1 and 3%) coupled with NaOH (pH 11.5) pretreatment at 121 ℃ for 18 

1 h achieved high glucan (> 95%) and xylan (> 60%) recoveries and lignin removal (> 50%). Also, 19 
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Gandolfi et al. [69] performed organosolv (45% methanol) pretreatment assisted with 3% H2SO4 1 

at 165 ℃ for 20 min and achieved more than 75% of hemicellulose recovery and 75% of lignin 2 

removal. Furthermore, electron beam irradiation pretreatment increased extractives in biomass due 3 

to the chain scission and enhanced enzymatic hydrolysis [29, 36].  4 

3.2. Enzymatic hydrolysis 5 

Enzymatic hydrolysis and fermentation of cellulose and hemicellulose are critical steps for 6 

converting lignocellulosic biomass into bioethanol. Sugar conversion efficiencies and final ethanol 7 

concentration are summarized in Table 4. The factors affecting hemp biomass conversion efficiency 8 

and ethanol yield are discussed below. 9 

Pretreatment condition: Pretreatment has a significant impact on enzymatic hydrolysis and 10 

fermentation through the re-distribution of chemical composition (cellulose, hemicellulose, and 11 

lignin) in hemp biomass and also affects sugar recoveries and degree of recalcitrance. Pakarinen et 12 

al. [39] reported that the steam explosion presented a higher carbohydrate conversion rate (78%) 13 

than alkali pretreatment (60%). Kuglarz et al. [23] found that alkaline pretreatment had higher 14 

sugar yield and ethanol productivity than acid pretreatment under designed pretreatment conditions. 15 

Gunnarsson et al. [24] investigated various thermochemical pretreatments using H2SO4, NaOH, 16 

and H2O2 at 121-180 ℃ and found that 3% H2O2 pretreatment achieved the highest overall sugar 17 

yield of 73.5%. Zhao et al. [42] compared liquid hot water, H2SO4, and NaOH pretreatment at 170 ℃ 18 
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for 30 min and observed that NaOH-pretreated Helena showed the highest sugar (88.9%) and 1 

ethanol (96.7%) yields.  2 

Solid loading: Low biomass loading (1.0-7.5%) is the advantage of increasing the accessibility 3 

of carbohydrates to enzymes, thus shortening enzymatic hydrolysis and fermentation duration and 4 

obtaining high sugar and ethanol yields (Table 4). However, low sugar (< 45 g/L) and ethanol (< 5 

21 g/L) concentration from low biomass loading were unable to meet the minimal ethanol 6 

concentration requirement (above 40 g/L) for commercial ethanol distillation. Given 54% of glucan 7 

in hemp biomass and 80% of glucan-to-ethanol conversion efficiency, solid loading for ethanol 8 

fermentation should be at least higher than 16.3% to meet techno-economical distillation. In 9 

addition, increasing solid loading can generally decrease sugar and ethanol yields, thus promoting 10 

the pretreatment method based on low solid loading to achieve high sugar and ethanol yields could 11 

be controversial and unreasonable statistically.  12 

High solid loading with enhanced fermentable sugars and less water consumption is preferred 13 

from cost-efficient and environmental standpoints. However, it still faces some fundamental 14 

challenges: 1) high viscous slurries restricts enzymatic accessibility and microbial growing; 2) 15 

increased hemicellulose content competes with cellulose for transport systems; 3) hydrophobic 16 

interaction between lignin and cellulase reduces enzymatic absorption. Currently, most studies for 17 

enzymatic hydrolysis and fermentation of hemp biomass are limited in low solid loading from 2.0 18 

to 7.5% [21, 23-26, 31, 34-36, 68, 69].  19 
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Enzyme loading: Combined cellulase and hemicellulase were utilized for enzymatic 1 

hydrolysis of pretreated hemp biomass (Table 4). In general, cellulase from 10-30 FPU (filter paper 2 

unit)/g-solid and hemicellulase loading from 10-20 IU (international unit) or 140 FXU (fungal 3 

xylanase unit)/g-solid were used for enzymatic saccharification of hemp biomass (Table 4). 4 

Increasing enzyme loading (dose/solid) would enhance the enzymatic action area to carbohydrates, 5 

thus liberating more sugar-based nutritions to microbial fermentation. However, the enzymatic cost 6 

is an essential evaluation indicator for the commercial exploration of lignocellulosic bioethanol 7 

[79]. A dynamic balance between sugar conversion efficiency and enzyme cost was needed before 8 

commercialization. 9 

3.3. Ethanol production 10 

Comparing the potential of hemp biomass with kenaf, switchgrass, and sorghum biomass, 11 

hemp biomass with high glucan content would exhibit high theoretical ethanol yields. Sipos et al. 12 

[68] observed that dry hemp biomass showed higher ethanol yield (171 g/kg-biomass) and 13 

conversion rate (74%) as compared to ensiled hemp (163 g/kg-biomass and 71%) under same 14 

pretreatment conditions (impregnation with 2% SO2 followed by steam pretreatment at 210 ℃ for 15 

5 min). Zhao et al. [42] compared the potential of four hemp biomass varieties for bioethanol 16 

production and found that Tygra variety showed the highest ethanol yield (96.7%) under the same 17 

pretreatment and fermentation conditions. Traditional ethanol red yeast (S. cerevisiae) is mainly 18 

used to ferment C6 glucose into bioethanol [21, 68], but it is incapable of fermenting C6 and C5 19 
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monomeric sugars simultaneously. For example, Wang et al. [51] reported that when using C6 yeast 1 

alone, xylose was not consumed and its final concentration reached 17 g/L. To utilize both hexose 2 

and pentose, Escherichia coli [80, 81] and engineered yeast [51] have been investigated along with 3 

the increased total ethanol yield and concentration. However, previous studies showed that xylose 4 

competed with the same transport systems with glucose, thus resulting in low sugar conversion 5 

efficiency [82, 83]. For example, Kilian and Van Uden [82] found that glucose competed with 6 

xylose for transport by the low-affinity system and limited xylose transport by the high-affinity 7 

system non-competitively. Meinander and Hahn-Hägerdal [83] reported that glucose, which is 8 

transported with high affinity by the same transport system, restricted xylose conversion by 99%. 9 

To end, the studies targeting engineered strains and E. coli on hemp biomass for bioethanol 10 

production are still unavailable. For bioethanol recovery, it is initially recovered from the 11 

fermentation slurries through fractional distillation at atmospheric pressure. Then, the resulting 12 

liquor fraction can be purified by extractive and azeotropic distillation. Solid fraction, including 13 

hemp residues, enzymes, and strains, can be further utilized for thermochemical conversions such 14 

as pyrolysis and combustion. The same technology used for corn ethanol recovery can be used for 15 

hemp ethanol recovery. 16 

4. Technological perspectives 17 

4.1. Optimization of pretreatment  18 
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Steam explosion and acid pretreatment showed higher hemicellulose decomposition and 1 

inhibitor formation but low lignin removal. In contrast, alkaline and organosolv pretreatment 2 

presented higher lignin removal and sugar recoveries but resulted in intensive water-consumption 3 

and reagent costs. In order to compensate individual disadvantages, combined pretreatments, such 4 

as acid-alkaline [85], acid-methanol [69], acid-ethanol [27], and NaOH-peroxide [24], have been 5 

proposed and showed a beneficial effect on further enhancing sugar conversion yields, but 6 

economic cost increased simultaneously. Emerging pretreatment technologies from the food 7 

industry, such as microwaves, ultrasound, electronic beam irradiation, and pulsed-electric field, 8 

have attracted considerable attention for biomass pretreatment [86]. However, their exploration of 9 

hemp biomass has not been performed. An optimal pretreatment condition should reduce the 10 

recalcitrance of hemp biomass to enzymes and maximize the sugar recoveries and utilization of 11 

byproduct. In addition, commercially feasible utilization of innovative and combined pretreatment 12 

still needs to couple with detailed process economics before leading to commercial realization and 13 

exploitation. 14 

4.2. Simultaneous saccharification and fermentation improvement 15 

Co-fermentation of hexose and pentose: Hemicellulose (xylan) roughly accounts for one-16 

thirds of carbohydrates in hemp biomass (Table 2). However, conventional strain (S. cerevisiae) is 17 

incapable of digesting xylose, resulting in sugar waste. Substantial studies have been explored to 18 

ferment both monomeric glucose and xylose in hydrolysates through the recombination of bacteria 19 
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and yeast or engineered yeast [51, 87-89]. Among them, Wang et al. [51] combined traditional C6 1 

yeast (S. cerevisiae) with engineered C5/C6 yeast (M11205) and efficiently fermented almost all 2 

glucose and partial xylose. Besides, E. coli has been proposed to digest glucose and xylose into 3 

ethanol simultaneously [80, 81]. However, to date, no investigation is conducted on hemp biomass 4 

for bioethanol fermentation using recombined or engineered strains. Therefore, their exploitation 5 

for the conversion of hemp biomass into bioethanol should be invested.  6 

High solid loading: In current corn-based ethanol production, solid loading is up to 25-30% 7 

[90], which is significantly higher than that (2.0-7.5%) from hemp biomass (Table 4) and other 8 

biomass. Fermentation at high solid loading would be advantageous in converting biomass as it 9 

promises high ethanol concentration while reducing water consumption. However, the decrease in 10 

sugar and ethanol yields can offset the advantages of converting at high solids concentration [91]. 11 

Thus, the critical point (optimal solid loading) corresponding to the highest ethanol titer is needed 12 

to explore. For an orbital shaker or conventional stirred-tank, high solid loading commonly causes 13 

insufficient mixing due to the high viscosity of slurries. Based on this phenomenon, multi-feed and 14 

fed-batch techniques have been employed to boost ethanol concentration [92-95]. Integration of 15 

first (grain-crop) and second (lignocellulosic biomass) generation has been proposed to accelerate 16 

cellulosic bioethanol's commercialization. Xu and Wang [96] investigated co-fermentation of corn 17 

flour and hydrothermally pretreated corn stover at a ratio of 12:12 and achieved ethanol 18 

concentration of 68.7 g/L and a total ethanol yield of 86.0%. Moreover, Xu et al. [97] obtained 19 

130.2 g/L of ethanol titer by integrating corn flour and hydrolysate liquor from saccharified corn 20 
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stover for fermentation. Besides, to enhance enzymatic saccharification and microbial digestion, 1 

Tween-80 has been used to block the interaction between lignin and cellulase [98]. Lin et al. [99] 2 

reported that an amphiphilic surfactant derived from dehydroabietic acid could improve enzymatic 3 

hydrolysis of acid-pretreated biomass. It is believed that the above findings would provide a clue 4 

to fabricate, optimize, and integrate the hemp biomass-based bioethanol production pathway.  5 

4.3. Life-cycle assessment and techno-economic analysis 6 

González-García et al. [15] studied life-cycle assessment of hemp hurds for bioethanol 7 

production from non-wood pulp mills and concluded that ethanol-based fuels from hemp biomass 8 

could offer enhanced environmental performance and decrease reliability in fossil fuels. However, 9 

economic and environmental assessment of hemp biomass for bioethanol production in terms of 10 

initial cultivation, harvesting, pretreatment, and subsequent distillation has not been carried out. 11 

Also, industrial hemp as a versatile crop has various commercial applications. For instance, hemp 12 

seeds can be utilized for oil [100], protein [3], and chemical extraction [101]; hemp biomass can 13 

be used for biocomposites [18, 102, 103], pyrolysis [104, 105], and bioenergy production [38, 106]. 14 

Therefore, comprehensive assessments should be implemented to target comparative analysis of 15 

hemp seeds and biomass used in various fields in terms of environmental impacts and economic 16 

benefits. 17 

5. Conclusions 18 
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Industrial hemp biomass is an excellent alternative candidate for bioethanol production due to 1 

its high cellulose content compared to other agricultural residues. Although the potential of hemp 2 

biomass for bioethanol production has been investigated intensively, the comprehensive study, 3 

including biomass production, optimization of pretreatment and fermentation conditions, and life-4 

cycle-assessment, is very limited. Besides, the economic benefit to growers and related industries 5 

largely depends on the growth of planting acreage and government policies. 6 
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Table 1. 

Biomass yield of industrial hemp.  

Location 
Biomass (t/ha, dry 

matter) 
Reference 

Central Italy 3.4-8.0  [7] 

Southwest Germany 5.2-12.8  [8] 

Southern Sweden 7.8-14.5 [9] 

Southern Sweden 9.9-14.4  [10] 

Netherlands 13.5-15.3  [11] 

Latvia 13.5-21.3  [12] 

Central Italy 13.1-26.3 [13] 

Northern Italy 28.6-31.2 [14] 

Range 3.4-31.2  
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Table 2. 

Chemical composition of lignocellulosic biomass. 

Sample 
Composition (%, dry basis) 

Reference 
Cellulose Hemicellulose Lignin 

Hemp biomass 42.0 15.7 13.2 [21] 

 46.4 20.1 15.0 [23] 

 42.3 18.2 22.9 [24] 

 40.1 19.6 21.7 [25] 

 36.5 17.0 21.9 [26] 

 57.7 17.8 16.8 [27] 

 37.0 21.3 13.8 [28] 

 38.5 23.9 15.1 [29] 

 63.0 14.2 14.6 [30] 

 75.6 10.1 10.3 [31] 

 50.8 27.8 14.7 [32] 

 43.6 15.0 21.5 [33] 

 40.1 16.0 14.8 [34] 

 58.9 12.7 14.1 [35] 

 46.8 15.2 8.0 [36] 

 37.4 27.6 18.0 [37] 

 63.0 17.0 9.0 [38] 

 58.0 13.0 10.0 [38] 

 46.1 13.9 18.0 [39] 

 44.5 32.8 21.0 [40] 

 46.1 18.3 17.7 [41] 

 50.8 20.4 18.6 [41] 

 51.1 22.1 21.4 [41] 

 53.7 21.8 22.2 [41] 

 40.1 12.5 14.6 [42] 

 42.7 14.3 15.0 [42] 

 40.7 13.3 15.7 [42] 

 40.1 16.6 17.8 [42] 

    Range 36.5-75.6 10.1-32.8 8.0-22.9  

Corn fiber 14.0 39.0 5.7 [43] 

 13.0 38.8 7.5 [44] 

 16.4 45.3 1.3 [45] 

 

    Range 

18.0 

13.0-18.0 

35.0 

35.0-45.3 

18.0 

1.3-18.0 

[46] 
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Corn stover 41.2 21.0 15.8 [47] 

 34.4 22.8 18.0 [48] 

 31.0 20.1 25.4 [49] 

 31.7 17.1 12.6 [50] 

 31.3 16.5 16.6 [51] 

 36.1 21.4 17.2 [52] 

 37.5 20.8 17.6 [53] 

 32.6 27.8 12.3 [54] 

 33.1 17.6 17.3 [55] 

    Range 31.0-41.2 16.5-22.8 12.6-25.4  

Sorghum bagasse 40.4 20.0 19.8 [56] 

 41.1 25.9 21.4 [57] 

 38.7 22.6 15.4 [58] 

 37.8 21.2 16.7 [58] 

 37.1 18.5 20.2 [59] 

 35.5 20.0 24.5 [60] 

 35.6 18.4 18.2 [61] 

    Range 35.5-41.1 18.4-25.9 15.4-24.5  
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Table 3. 

Compositional changes, sugar recoveries, and lignin removal of hemp biomass after pretreatment. 

Pretreatment  Pretreatment conditions Results Reference 

Steam 10% solid loading at 200-

230 ℃ for 10 min 

Glucan (>82%) and xylan (18-66%) 

recoveries, lower lignin removal 

[25] 

Steam 10% solid loading at 

200 ℃ for 5 min 

Glucan content increased from 46.1 

to 69.6% and xylan content 

decreased from 9.5 to 5.5% 

[39] 

Steam with 

SO2 

2% solid loading at 205-

215 ℃ for 5 min 

Glucan (65-67%) and lignin (25-

30%) contents in solid, HMF (0.08-

0.31 g/L) and furfural (0.29-0.93 

g/L) 

[68] 

Steam with 

H2SO4 

10% solid loading at 140-

180 ℃ for 10-20 min  

Glucan (>95%) and xylan (54-56%) 

recoveries, furfural (0.10 g/L) and 

HMF (0.21-0.25 g/L) 

[21] 

Steam with 

H2SO4 

Acid loading (62.9 g/kg) 

at 165 °C for 30 min 

Surface areas and crystallinity 

increased, furfural (0.035 g/L) and 

HMF (0.46 g/L) 

[35] 

H2SO4 10% solid loading at 

170 °C for 30 min 

Glucan (52-69.0%) and xylan (2.1-

2.7%) recoveries and lignin removal 

(2-31%)  

[42] 

H2SO4 10% solid loading at 

180 °C for 10 min 

Glucan (>95%) and xylan (41-51%) 

recoveries and lignin removal (35-

41%) 

[23] 

H2SO4 10% solid loading at 

180 °C for 10 min 

Glucan (87-95%) and xylan (11-

22%) recoveries, HMF (0.15-0.35 

g/L) and furfural (0.10-0.25 g/L) 

[24] 

H2SO4 10% solid loading at 150-

160 ℃ for 10-20 min 

Decomposition of glucan and 

hemicellulose increased as 

pretreatment severity enhanced   

[28] 

Methanol with 

H2SO4 

4% solid loading at 

165 ℃ for 20 min 

Hemicellulose (>75%) and lignin (> 

75%) was removed 

[69] 
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NaOH 10% solid loading at 

121 °C for 1 h  

Glucan (>96%) and xylan (>55%) 

recoveries, lignin removal (>60%), 

no HMF and furfural formation 

[24] 

NaOH 10% solid loading at 

170 ℃ for 30 min 

Glucan (77.5-90.2%) and xylan 

(24.5-29.7%) recoveries and lignin 

removal (58.6-75.3%)  

[42] 

NaOH 10% solid loading at 

121 ℃ for 1 h 

Glucan content increased from 46.1 

to 83.6% and xylan content 

decreased from 9.5 to 8.4% 

[39] 

NaOH Ground into 2mm and 

pretreated at 90 ℃ for 5 h 

Cellulose content increased from 

50.82 to 62.70%; hemicellulose 

decreased from 27.79 to 20.16% 

[32] 

NaOH Dried hemp hurds was 

soaked in 1.6 M NaOH or 

48 h 

Cellulose polymerization and 

polydispersity index decreased, 

thermal stability increased 

[40] 

NaOH and 

KOH 

10% solid loading at 120-

140 ℃ for 1-2 h 

Alkali ions were correlated with ash 

content, char, and lower molecular 

products 

[70] 

Na2SO3 with 

NaOH 

20% solid loading at 140-

200 ℃ for 60-150 min 

The crystallite size of cellulose in 

alkali sulfite pulp samples increased 

[71] 

Electron beam 

irradiation 

The sample was irradiated 

at 150, 300, 450 kGy 

Cellulose, xylan, and lignin contents 

decreased with increasing electron 

irradiation dose 

[29] 

Electron beam 

irradiation 

Ground hemp was 

irradiated at 150-450 kGy 

Hot-water and 1% NaOH extraction 

rates increased, carbonyl groups 

increased indirectly 

[36] 
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Table 4. 

Enzymatic saccharification and fermentation of hemp biomass after pretreatment. 

Pretreatment 

method  

Saccharification or fermentation 

conditions 

Results Reference 

Steam 5% solid loading, 25 FPU 

(NS50013)/g-glucan at 32 ℃ for 

72h 

Glucan yield (62-83%) and 

ethanol yield (38-70%)  

[25] 

Steam 2% solid loading, 10 FPU 

(Celluclast) and 500 nkat 

(Novozyme 188)/g-solid, at 

50 ℃ for 48 h 

78% of total carbohydrates 

conversion 

[39] 

Steam with 

SO2 

7.5% solid loading, 20 FPU 

(Celluclast) and 23 IU 

(Novozym 188)/g-glucan, at 

37 ℃ for 72h 

Glucose yield (373 g/kg) and 

ethanol titer (21.3 g/L) 

[68] 

Steam with 

H2SO4 

5% solid loading, 30 FPU 

(Celluclast) and 20 IU 

(Novozyme 188)/g-glucan, at 

37 ℃ for 48 h 

Glucose yield (73–74%), 

ethanol yield (75–79%) and 

titer (2.89-10.0 g/L) 

[21] 

Steam with 

H2SO4 

1% solid loading, Celluclast-1.5 

L (480 FPU/L), at 50 ℃ for 24 h 

Glucose (2.25-5.90 g/L) and 

xylose (0.02-1.14 g/L) 

[35] 

H2SO4 7.5% solid loading, 20 FPU 

(Celluclast) and 15 IU 

(Novozyme 188)/g glucan, at 

50 ℃ for 48 h 

Glucose (35.0-39.1 g/L) and 

xylose (3.73-3.80 g/L), 

glucan (68.9-72.2%) and 

xylan (44.3-50.1%) yields 

[23] 

H2SO4 5% solid loading, 20 FPU 

(Celluclast) and 15 IU 

(Novozyme 188)/g glucan, at 

50 ℃ for 48 h 

Glucose (23.5-26.6 g/L) and 

xylose (0.74-1.77 g/L), 

glucan (69.8-73.9%) and 

xylan (35.9-47.3%) yields 

[24] 

H2SO4 5% solid loading, 30 FPU 

(Cellic® CTec3) and 140 FXU 

(NS22244)/g-solid, at 37 ℃ for 

72 h 

Ethanol concentration (11.9-

13.8 g/L) and yield (67.2-

89.6%) 

[42] 
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Methanol 

with H2SO4  

5% solid loading, 20 FPU (Cellic 

CTec2)/g-solid and at 50 ℃/150 

rpm for 72 h 

60% of cellulose-to-glucose 

conversion 

[69] 

NaOH 5% solid loading, 20 FPU 

(Celluclast) and 15 IU 

(Novozyme 188)/g glucan, at 

50 ℃ for 48 h 

Glucose (25.5-27.2 g/L) and 

xylose (6.68-8.14 g/L), 

glucan (78.0-80.1%) and 

xylan (67.3-85.9%) yields 

[24] 

NaOH  10 mg enzyme (CTec2 and 

HTec2) protein/g-biomass, at 

50 °C for 72 h 

Theoretical ethanol yields 

(68.2 gallons/dry ton 

biomass) 

[26] 

NaOH 5% solid loading, 30 FPU 

(Cellic® CTec3) and 140 FXU 

(NS22244)/g-solid, at 37 ℃ for 

72 h 

Ethanol concentration (18.2-

20.3 g/L) and yield (95.8-

96.7%) 

[42] 

H2O2 with 

NaOH 

5% solid loading, 20 FPU 

(Celluclast) and 15 IU 

(Novozyme 188)/g glucan, at 

50 ℃ for 48 h 

Glucose (25.5-31.3 g/L) and 

xylose (4.70-5.85 g/L), 

glucan (83.4-90.0%) and 

xylan (46.0-59.2%) yields 

[24] 

Glycerol with 

NaOH 

5% solid loading, 15 FPU (Cellic 

CTec2)/g glucan, at 50 ℃ for 48 

h 

Glucose (84.1-91.9%) and 

xylose (79.6-91.8 %) yields 

[34] 

Ionic liquid 

(Microwave) 

15 mL of 16 mg/ml glucose 

produced from the hydrolysis, at 

30 ℃ for 60 h 

75.6% bioethanol yield [31] 

Electron beam 

irradiation 

20 FPU (Celluclast)/g-biomass 

and Novozym 342 (1/4 of 

Celluclast addition), at 50 ℃ for 

72 h 

Glucan and xylan yields 

increased by 3.4-6.2% and 

7.8-18.4%, respectively 

[36] 
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Figure Captions 

Fig. 1. Cross-section of industrial hemp stem (modified from [17]). 

Fig. 2. The role of pretreatment on hemp biomass (adapted from [67]).  
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Fig. 1. 
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Fig. 2. 
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