8,421 research outputs found
Characterization of gene expression on genomic segment 7 of infectious salmon anaemia virus
BACKGROUND: Infectious salmon anaemia (ISA) virus (ISAV), an important pathogen of fish that causes disease accompanied by high mortality in marine-farmed Atlantic salmon, is the only species in the genus Isavirus, one of the five genera of the Orthomyxoviridae family. The Isavirus genome consists of eight single-stranded RNA species, and the virions have two surface glycoproteins; haemagglutinin-esterase (HE) protein encoded on segment 6 and fusion (F) protein encoded on segment 5. Based on the initial demonstration of two 5'-coterminal mRNA transcripts by RT-PCR, ISAV genomic segment 7 was suggested to share a similar coding strategy with segment 7 of influenza A virus, encoding two proteins. However, there appears to be confusion as to the protein sizes predicted from the two open reading frames (ORFs) of ISAV segment 7 which has in turn led to confusion of the predicted protein functions. The primary goal of the present work was to clone and express these two ORFs in order to assess whether the predicted protein sizes match those of the expressed proteins so as to clarify the coding assignments, and thereby identify any additional structural proteins of ISAV. RESULTS: In the present study we show that ISAV segment 7 encodes 3 proteins with estimated molecular masses of 32, 18, and 9.5 kDa. The 18-kDa and 9.5-kDa products are based on removal of an intron each from the primary transcript (7-ORF1) so that the translation continues in the +2 and +3 reading frames, respectively. The segment 7-ORF1/3 product is variably truncated in the sequence of ISAV isolates of the European genotype. All three proteins are recognized by rabbit antiserum against the 32-kDa product of the primary transcript, as they all share the N-terminal 22 amino acids. This antiserum detected a single 35-kDa protein in Western blots of purified virus, and immunoprecipitated a 32-kDa protein in ISAV-infected TO cells. Immunofluorescence staining of infected cells with the same antiserum revealed the protein(s) to be localized in the cytoplasm. Vaccination of farmed Atlantic salmon with the 32-kDa protein resulted in a higher survival rate than what was attainable with the HE protein, albeit a moderate protection against the low ISAV challenge. CONCLUSION: Collectively, our observations suggest that the product of ISAV segment 7 primary transcript (7-ORF1) is a structural protein. The 18-kDa (7-ORF1/2) protein is identified as the putative ISAV nuclear export protein based on the presence of nuclear export signals. The function of the 9.5-kDa (7-ORF1/3) protein is not presently known
Quantifying single nucleotide variant detection sensitivity in exome sequencing
BACKGROUND: The targeted capture and sequencing of genomic regions has rapidly demonstrated its utility in genetic studies. Inherent in this technology is considerable heterogeneity of target coverage and this is expected to systematically impact our sensitivity to detect genuine polymorphisms. To fully interpret the polymorphisms identified in a genetic study it is often essential to both detect polymorphisms and to understand where and with what probability real polymorphisms may have been missed. RESULTS: Using down-sampling of 30 deeply sequenced exomes and a set of gold-standard single nucleotide variant (SNV) genotype calls for each sample, we developed an empirical model relating the read depth at a polymorphic site to the probability of calling the correct genotype at that site. We find that measured sensitivity in SNV detection is substantially worse than that predicted from the naive expectation of sampling from a binomial. This calibrated model allows us to produce single nucleotide resolution SNV sensitivity estimates which can be merged to give summary sensitivity measures for any arbitrary partition of the target sequences (nucleotide, exon, gene, pathway, exome). These metrics are directly comparable between platforms and can be combined between samples to give “power estimates” for an entire study. We estimate a local read depth of 13X is required to detect the alleles and genotype of a heterozygous SNV 95% of the time, but only 3X for a homozygous SNV. At a mean on-target read depth of 20X, commonly used for rare disease exome sequencing studies, we predict 5–15% of heterozygous and 1–4% of homozygous SNVs in the targeted regions will be missed. CONCLUSIONS: Non-reference alleles in the heterozygote state have a high chance of being missed when commonly applied read coverage thresholds are used despite the widely held assumption that there is good polymorphism detection at these coverage levels. Such alleles are likely to be of functional importance in population based studies of rare diseases, somatic mutations in cancer and explaining the “missing heritability” of quantitative traits
p38 Mapk signal pathway involved in anti-inflammatory effect of chaihu-shugan-san and shen-ling-bai-zhu-san on hepatocyte in non-alcoholic steatohepatitis rats
Background: Traditional Chinese Medicine (TCM), has over thousands-of-years history of use. Chaihu-Shugan-San (CSS), and Shen-ling-bai-zhu-San (SLBZS), are famous traditional Chinese herbal medicine formulas, which have been used in China, for the treatment of many chronic diseases.Materials and Methods:This study investigated the anti-inflammatory effects of CSS and SLBZS on signaling molecules involved in p38 mitogen-activated protein kinase (p38 MAPK), pathway on hepatocytes of non-alcoholic steatohepatitis (NASH), rats induced by high fat diet. SD male rats were randomly divided into 8 groups: negative control group, model control group, high (9.6g/kg/day)/low (3.2g/kg/day)-dose CSS group, high (30g/kg/day)/low (10g/kg/day)-dose SLBZS group, high (39.6g/kg/day)/low (13.2g/kg/day)-dose integrated group. The rats of NASH model were induced by feeding a high-fat diet. After 16, wks, Hepatocytes were isolated from 6, rats in each group by collagenase perfusion. The liver histopathological changes and serum inflammatory cytokines TNF-α, IL-6 were determined. The proteins of TLR4, phosphor-p38 MAPK and p38 MAPK involved in p38 MAPK signal pathway were assayed.Results: The statistical data indicated the NASH model rats reproduced typical histopathological features of NASH in human. CSS and SLBZS ameliorated lipid metabolic disturbance, attenuated NASH progression, decreased the levels of TNF-α and IL-6 in serum, as well as inhibited TLR4 protein expression, p38 MAPK phosphorylation, and activation of p38 MAPK. In conclusion, CSS and SLBZS might work as a significant anti-inflammatory effect on hepatocyte of NASH by inhibiting the activation of TLR4, p-p38 MAPK and p38 MAPK involved in p38 MAPK signal pathway.Conclusion: To some extent, CSS and SLBZS may be a potential alternative and complementary medicine to protect against liver injury, alleviate the inflammation reaction, moderate NASH progression.Key words: p38 mitogen-activated protein kinase; Toll like receptor 4; Hepatocytes; Non-alcoholic Steatohepatitis; Traditional Chinese medicine
Multi-seeded melt growth (MSMG) of bulk Y-Ba-Cu-O using thin-film seeds
Y-Ba-Cu-O (YBCO) and Sm-Ba-Cu-O (SmBCO) thin films have been used for the
first time as heterogeneous seeds to multi-seed successfully the melt growth of
bulk YBCO in a multi-seeded melt growth (MSMG) process. The use of thin film
seeds, which may be prepared with highly controlled orientation (i.e. with a
well-defined a-b plane and precisely known a-direction), is based on their
superheating properties and reduces significantly contamination of the bulk
sample by the seed material. A variety of grain boundaries were obtained by
varying the angle between the seeds. Microstructural studies indicate that the
extent of residual melt deposited at the grain boundary decreases with
increasing grain boundary contact angle. It is established that the growth
front proceeds continuously at the (110)/(110) grain boundary without trapping
liquid, which leads to the formation of a clean grain boundary
Nonlinear Elasticity in Biological Gels
Unlike most synthetic materials, biological materials often stiffen as they
are deformed. This nonlinear elastic response, critical for the physiological
function of some tissues, has been documented since at least the 19th century,
but the molecular structure and the design principles responsible for it are
unknown. Current models for this response require geometrically complex ordered
structures unique to each material. In this Article we show that a much simpler
molecular theory accounts for strain stiffening in a wide range of molecularly
distinct biopolymer gels formed from purified cytoskeletal and extracellular
proteins. This theory shows that systems of semi-flexible chains such as
filamentous proteins arranged in an open crosslinked meshwork invariably
stiffen at low strains without the need for a specific architecture or multiple
elements with different intrinsic stiffnesses.Comment: 23 pages, 5 figures, submitted to Natur
Anti-epileptic effect of Ganoderma lucidum polysaccharides by inhibition of intracellular calcium accumulation and stimulation of expression of CaMKII a in epileptic hippocampal neurons
Purpose: To investigate the mechanism of the anti-epileptic effect of Ganoderma lucidum polysaccharides (GLP), the changes of intracellular calcium and CaMK II a expression in a model of epileptic neurons were investigated.
Method: Primary hippocampal neurons were divided into: 1) Control group, neurons were cultured with Neurobasal medium, for 3 hours; 2) Model group I: neurons were incubated with Mg2+ free medium for 3 hours; 3) Model group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with the normal medium for a further 3 hours; 4) GLP group I: neurons were incubated with Mg2+ free medium containing GLP (0.375 mg/ml) for 3 hours; 5) GLP group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with a normal culture medium containing GLP for a further 3 hours. The CaMK II a protein expression was assessed by Western-blot. Ca2+ turnover in neurons was assessed using Fluo-3/AM which was added into the replacement medium and Ca2+ turnover was observed under a laser scanning confocal microscope.
Results: The CaMK II a expression in the model groups was less than in the control groups, however, in the GLP groups, it was higher than that observed in the model group. Ca2+ fluorescence intensity in GLP group I was significantly lower than that in model group I after 30 seconds, while in GLP group II, it was reduced significantly compared to model group II after 5 minutes.
Conclusion: GLP may inhibit calcium overload and promote CaMK II a expression to protect epileptic neuron
The endogenous hydrogen sulfide producing enzyme cystathionine-β synthase contributes to visceral hypersensitivity in a rat model of irritable bowel syndrome
<p>Abstract</p> <p>Background</p> <p>The pathogenesis of visceral hypersensitivity, a characteristic pathophysiological feature of irritable bowel syndrome (IBS), remains elusive. Recent studies suggest a role for hydrogen sulfide (H<sub>2</sub>S) in pain signaling but this has not been well studied in visceral models of hyperalgesia. We therefore determined the role for the endogenous H<sub>2</sub>S producing enzyme cystathionine-β-synthetase (CBS) in a validated rat model of IBS-like chronic visceral hyperalgesia (CVH). CVH was induced by colonic injection of 0.5% acetic acid (AA) in 10-day-old rats and experiments were performed at 8–10 weeks of age. Dorsal root ganglion (DRG) neurons innervating the colon were labeled by injection of DiI (1,1'-dioleyl-3,3,3',3-tetramethylindocarbocyanine methanesulfonate) into the colon wall.</p> <p>Results</p> <p>In rat DRG, CBS-immunoreactivity was observed in approximately 85% of predominantly small- and medium-sized neurons. Colon specific DRG neurons revealed by retrograde labeling DiI were all CBS-positive. CBS-positive colon neurons co-expressed TRPV1 or P2X3 receptors. Western blotting analysis showed that CBS expression was significantly increased in colon DRGs 8 weeks after neonatal AA-treatment. Furthermore, the CBS inhibitor hydroxylamine markedly attenuated the abdominal withdrawal reflex scores in response to colorectal distention in rats with CVH. By contrast, the H<sub>2</sub>S donor NaHS significantly enhanced the frequency of action potentials of colon specific DRG neurons evoked by 2 times rheobase electrical stimulation.</p> <p>Conclusion</p> <p>Our results suggest that upregulation of CBS expression in colonic DRG neurons and H<sub>2</sub>S signaling may play an important role in developing CVH, thus identifying a specific neurobiological target for the treatment of CVH in functional bowel syndromes.</p
Environmentally friendly analysis of emerging contaminants by pressurized hot water extraction-stir bar sorptive extraction-derivatization and gas chromatography-mass spectrometry
This work describes the development, optimiza-
tion, and validation of a new method for the simultaneous
determination of a wide range of pharmaceuticals (beta-
blockers, lipid regulators
...
) and personal care products
(fragrances, UV filters, phthalates
...
) in both aqueous and
solid environmental matrices. Target compounds were
extracted from sediments using pressurized hot water ex-
traction followed by stir bar sorptive extraction. The first
stage was performed at 1,500 psi during three static extrac-
tion cycles of 5 min each after optimizing the extraction
temperature (50
–
150 °C) and addition of organic modifiers
(% methanol) to water, the extraction solvent. Next, aqueous
extracts and water samples were processed using polydime-
thylsiloxane bars. Several parameters were optimized for
this technique, including extraction and desorption time,
ionic strength, presence of organic modifiers, and pH. Fi-
nally, analytes were extracted from the bars by ultrasonic
irradiation using a reduced amount of solvent (0.2 mL) prior
to derivatization and gas chromatography
–
mass spectrome-
try analysis. The optimized protocol uses minimal amounts
of organic solvents (<10 mL/sample) and time (
≈
8 h/sam-
ple) compared to previous ex
isting methodologies. Low
standard deviation (usually below 10 %) and limits of de-
tection (sub-ppb) vouch for the applicability of the method-
ology for the analysis of target compounds at trace levels.
Once developed, the method was applied to determin
Moisture transport by Atlantic tropical cyclones onto the North American continent
Tropical Cyclones (TCs) are an important source of freshwater for the North American continent. Many studies have tried to estimate this contribution by identifying TC-induced precipitation events, but few have explicitly diagnosed the moisture fluxes across continental boundaries. We design a set of attribution schemes to isolate the column-integrated moisture fluxes that are directly associated with TCs and to quantify the flux onto the North American Continent due to TCs. Averaged over the 2004–2012 hurricane seasons and integrated over the western, southern and eastern coasts of North America, the seven schemes attribute 7 to 18 % (mean 14 %) of total net onshore flux to Atlantic TCs. A reduced contribution of 10 % (range 9 to 11 %) was found for the 1980–2003 period, though only two schemes could be applied to this earlier period. Over the whole 1980–2012 period, a further 8 % (range 6 to 9 % from two schemes) was attributed to East Pacific TCs, resulting in a total TC contribution of 19 % (range 17 to 22 %) to the ocean-to-land moisture transport onto the North American continent between May and November. Analysis of the attribution uncertainties suggests that incorporating details of individual TC size and shape adds limited value to a fixed radius approach and TC positional errors in the ERA-Interim reanalysis do not affect the results significantly, but biases in peak wind speeds and TC sizes may lead to underestimates of moisture transport. The interannual variability does not appear to be strongly related to the El Nino-Southern Oscillation phenomenon
- …