1,706 research outputs found

    Numerical analysis of the embedded abutments of integral bridges

    No full text
    A numerical case study is presented, which investigates the performance of embedded integral bridge abutments and the maximum magnitude and distribution of earth pressure within the retained soil. The Three Surface Kinematic Hardening model is adopted in the numerical analysis, which successfully reproduced key features of soil behaviour under small strain cyclic loading. The results show that the earth pressures behind the abutment change in a complicated way, while the largest bending moments in the abutment wall increase with cycles at a decreasing rate, with a final value far less than the one derived from current design standards. A number of factors have been investigated and the influences of the wall flexure and soil stiffness are highlighted. The research results will lead to safe and economic design of such structures

    High-performance InP-based photodetector in an amplifier layer stack on semi-insulating substrate

    Get PDF
    A waveguide photodetector (PD) based on semi-insulating (SI) indium phosphide (InP) was simulated, designed, and fabricated. The layer stack for this PD was optimized for use as an optical amplifier or laser and it can be combined with the passive components. By using an SI substrate and deep etching, a small, efficient, and high-speed PD was made, which allows for easy integration of source, detector, and passive optical components on a single chip. A 3-dB bandwidth of 35 GHz and 0.25 A/W external radio-frequency reponsivity is measured at 1.55-mum wavelength for a 1.5-mum-wide and 30-mum-long waveguide PD at -4-V bias voltage. The polarization dependence in the responsivity is less than 0.27 d

    A theoretical scheme for generation of Gazeau-Klauder coherent states via intensity-dependent degenerate Raman interaction

    Full text link
    A theoretical scheme is presented for generating Gazeau-Klauder coherent states(GKCSs) via the generalization of degenerate Raman interaction with coupling constant to intensity-dependent coupling. Firstly, we prove that in the intensity-dependent degenerate Raman interaction, under particular conditions, the modified efective Hamiltonian can be used instead of Hamiltonian in the interaction picture, for describing the atom-field interaction. We suppose that the cavity field is initially prepared in a nonlinear CS, which is not temporally stable. As we will observe, after the occurrence of the interaction between atom and field, the generated state involves a superposition of GKCSs which are temporally stable and initial nonlinear CS. Under specific conditions which may be prepared, the generated state just includes GKCS. So, in this way we produced the GKCS, successfully.Comment: 12 pages, 1 figures, Optics Communications, Article in Pres

    Psychometric Validation of the Parental Bonding Instrument in a UK Population–Based Sample Role of Gender and Association With Mental Health in Mid-Late Life

    Get PDF
    The factorial structure of the Parental Bonding Instrument (PBI) has been frequently studied in diverse samples but no study has examined its psychometric properties from large, population-based samples. In particular, important questions have not been addressed such as the measurement invariance properties across parental and offspring gender. We evaluated the PBI based on responses from a large, representative population-based sample, using an exploratory structural equation modeling method appropriate for categorical data. Analysis revealed a three-factor structure representing “care,” “overprotection,” and “autonomy” parenting styles. In terms of psychometric measurement validity, our results supported the complete invariance of the PBI ratings across sons and daughters for their mothers and fathers. The PBI ratings were also robust in relation to personality and mental health status. In terms of predictive value, paternal care showed a protective effect on mental health at age 43 in sons. The PBI is a sound instrument for capturing perceived parenting styles, and is predictive of mental health in middle adulthood

    Effect of tool profile and fatigue loading on the local hardness around scratches in clad and unclad aluminium alloy 2024

    Get PDF
    Nanoindentation has been used to study the hardness changes produced by scratching of aluminium alloy AA2024, with and without a clad layer of pure aluminium. The hardness was mapped around scratches made with diamond tools of different profiles. One tool produced significant plastic damage with associated hardening at the scratch root, whilst the other produced a 'cleaner' cut with no hardening. The different behaviours and are attributed to whether the tool makes the scratch by a 'cutting' or a 'ploughing' mechanism. The degree of plastic damage around the scratches has been correlated with peak broadening data obtained using synchrotron X-ray diffraction. There was no change observed in the local hardness around the scratch with fatigue loading

    Curvature Based Biomarkers for Diabetic Retinopathy via Exponential Curve Fits in SE(2)

    Get PDF
    We propose a robust and fully automatic method for the analysis of vessel tortuosity. Our method does not rely on pre-segmentation of vessels, but instead acts directly on retinal image data. The method is based on theory of best-fit exponential curves in the roto-translation group SE(2). We lift 2D images to 3D functions called orientation scores by including an orientation dimension in the domain. In the extended domain of positions and orientations (identified with SE(2)) we study exponential curves, whose spatial projections have constant curvature. By locally fitting such curves to data in orientation scores, via our new iterative stabilizing refinement method, we are able to assign to each location a curvature and confidence value. These values are then used to define global tortuosity measures. The method is validated on synthetic and retinal images. We show that the tortuosity measures can serve as effective biomarkers for diabetes and different stages of diabetic retinopathy

    Phase diagram and neutron spin resonance of superconducting NaFe1−xCuxAs

    Get PDF
    We use transport and neutron scattering to study the electronic phase diagram and spin excitations of NaFe1−xCuxAs single crystals. Similar to Co- and Ni-doped NaFeAs, a bulk superconducting phase appears near x≈2% with the suppression of stripe-type magnetic order in NaFeAs. Upon further increasing Cu concentration the system becomes insulating, culminating in an antiferromagnetically ordered insulating phase near x≈50%. Using transport measurements, we demonstrate that the resistivity in NaFe1−xCuxAs exhibits non-Fermi-liquid behavior near x≈1.8%. Our inelastic neutron scattering experiments reveal a single neutron spin resonance mode exhibiting weak dispersion along c axis in NaFe0.98Cu0.02As. The resonance is high in energy relative to the superconducting transition temperature Tc but weak in intensity, likely resulting from impurity effects. These results are similar to other iron pnictides superconductors despite that the superconducting phase in NaFe1−xCuxAs is continuously connected to an antiferromagnetically ordered insulating phase near x≈50% with significant electronic correlations. Therefore, electron correlations is an important ingredient of superconductivity in NaFe1−xCuxAs and other iron pnictides

    Retinal Artery/Vein Classification via Graph Cut Optimization

    Get PDF
    In many diseases with a cardiovascular component, the geometry of microvascular blood vessels changes. These changes are specific to arteries and veins, and can be studied in the microvasculature of the retina using retinal photography. To facilitate large-scale studies of artery/vein-specific changes in the retinal vasculature, automated classification of the vessels is required. Here we present a novel method for artery/vein classification based on local and contextual feature analysis of retinal vessels. For each vessel, local information in the form of a transverse intensity profile is extracted. Crossings and bifurcations of vessels provide contextual information. The local and contextual features are integrated into a non-submodular energy function, which is optimized exactly using graph cuts. The method was validated on a ground truth data set of 150 retinal fundus images, achieving an accuracy of 88.0% for all vessels and 94.0% for the six arteries and six veins with highest caliber in the image

    Osmium isotope evidence for two pulses of increased continental weathering linked to Early Jurassic volcanism and climate change

    Get PDF
    Large igneous provinces (LIPs) are proposed to have caused a number of episodes of abrupt environmental change by increasing atmospheric CO2 levels, which were subsequently alleviated by drawdown of CO2 via enhanced continental weathering and burial of organic matter. Here the sedimentary records of two such episodes of environmental change, the Toarcian oceanic anoxic event (T-OAE) and preceding Pliensbachian–Toarcian (Pl-To) event (both possibly linked to the Karoo-Ferrar LIP), are investigated using a new suite of geochemical proxies that have not been previously compared. Stratigraphic variations in osmium isotope (187Os/188Os) records are compared with those of mercury (Hg) and carbon isotopes (d13C) in samples from the Mochras core, Llanbedr Farm, Cardigan Bay Basin, Wales. These sedimentary rocks are confirmed as recording an open-marine setting by analysis of molybdenum/uranium enrichment trends, indicating that the Os isotope record in these samples reflects the isotopic composition of the global ocean. The Os isotope data include the first results across the Pl-To boundary, when seawater 187Os/188Os increased from ~0.40 to ~0.53, in addition to new data that show elevated 187Os/188Os (from ~0.42 to ~0.68) during the T-OAE. Both increases in 187Os/188Os correlate with negative carbon isotope excursions and increased mercury concentrations, supporting an interplay between terrestrial volcanism, weathering, and climate that was instrumental in driving these distinct episodes of global environmental change. These observations also indicate that the environmental impact of the Karoo-Ferrar LIP was not limited solely to the T-OAE

    Infrastructure for Retinal Image Analysis

    Get PDF
    This paper introduces a retinal image analysis infrastructure for the automatic assessment of biomarkers related to early signs of diabetes, hypertension and other systemic diseases. The developed application provides several tools, namely normalization, vessel enhancement and segmentation, optic disc and fovea detection, junction detection, bifurcation/crossing discrimination, artery/vein classification and red lesion detection. The pipeline of these methods allows the assessment of important biomarkers characterizing dynamic properties of retinal vessels, such as tortuosity, width, fractal dimension and bifurcation geometry features
    • 

    corecore