228 research outputs found

    Analysis of the early response to chemotherapy in lung cancer using apparent diffusion coefficient single-slice histogram

    Get PDF
    Purpose: To evaluate the application of apparent diffusion coefficient (ADC) values derived from diffusion-weighted imaging (DWI) using single-slice histogram analysis to study the chemotherapy responses in lung cancer.Methods: A total of 22 chemotherapy patients with advanced lung cancer from the Nanjing Drum Tower Hospital (Nanjing, China) were included in the study. We obtained DWI before and during chemotherapy, performed single-slice histogram analysis of ADC values, and assessed responses after 3 months of chemotherapy. Differences in ADC histogram parameters were compared between the responder and non-responder groups.Results: After therapy, we classified 13 as responders and 9 patients as non-responders. The recorded peak ADC value (ADCpeak) and lowest ADC value (ADClowest) did not show any significant difference in baseline ADClowest and ADCpeak between responders and non-responders. After chemotherapy, 13 responders had significant increase in ADClowest and ADCpeak compared with pre-treatment values (p < 0.001). ADClowest significantly increased in 9 non-responders (p < 0.05), although ADCpeak did not significantly increase. ADCpeak changes were significantly larger in the responder group than in the nonresponder group (p = 0.024). ADClowest changes after treatment were larger in the responder group than in the non-responder group, though not significantly.Conclusion: ADC values derived from single-slice histogram analysis may provide a useful and clinically feasible method for monitoring early chemotherapy response in patients with lung cancer.Keywords: Lung cancer, Chemotherapy, Apparent diffusion coefficient values, Diffusion-weighted imaging, Single-slice histogram analysi

    Reactive Oxygen Species and p38 Mitogen-activated Protein Kinase Mediate Exercise-induced Skeletal Muscle-derived Interleukin-6 Expression

    Get PDF
    Interleukin-6 (IL-6) is a pleiotropic cytokine secreted by many different cell types, and skeletal muscle is an important source of IL-6 during exercise. Here, we studied the effects of glucose deprivation in vitro on skeletal muscle-derived IL-6 expression and release in C2C12 myocytes, as well as its regulation by p38 mitogen-activated protein kinase (p38MAPK) and reactive oxygen species (ROS). C2C12 myotubes were cultured in DMEM medium containing 4.5 g · L−1 glucose (glucose control, GC) or DMEM medium containing no glucose (glucose deprivation, GD) for 0, 6, 12, 18 and 24 hours, and then incubated with 10mM NAC (a ROS scavenger) or 10 μM SB203580 (a p38MAPK inhibitor) under either GC or GD conditions for 24 hours. IL-6 expression levels were subsequently analyzed using RT–PCR, and IL-6 protein levels in the medium were measured using ELISA. Glucose deprivation significantly enhanced IL-6 expression at 18 and 24 hours compared to the glucose control, and caused IL-6 protein levels to increase significantly over the entire 24-hour measurement period. The ROS scavenger NAC inhibited the glucose deprivation-induced release of IL-6 protein almost completely, while the p38MAPK inhibitor SB203580 inhibited glucose deprivation-induced IL-6 protein release to a lesser extent. Our study suggests that glucose deprivation in C2C12 myocytes induces IL-6 expression and release, and that this IL-6 release is mainly mediated via ROS signaling. Skeletal muscle-derived IL-6 may thus play an important role in energy metabolism during exercise

    A semi-analytical method for the dynamic analysis of cylindrical shells with arbitrary boundaries

    Get PDF
    The dynamic behavior of cylindrical shells with arbitrary boundaries is studied in this paper. Love's shell theory and Hamilton's principle are employed to derive the motion equations for cylindrical shells. A semi-analytical methodology, which incorporates Durbin's inverse Laplace transform, differential quadrature method and Fourier series expansion technique, is proposed to investigate this phenomenon. The use of the differential quadrature method provides a solution in terms of the axial direction whereas the use of Durbin's numerical inversion method generates a solution in the time domain. Comparison of calculated frequency parameters to that derived from the literature illustrates the effectiveness of the method. Specifically, convergence tests indicate that the present approach has a rapid convergence, the time-history response and the Navier's solution are in great agreement. Comparisons between time-history responses derived by two shell theories show that the results fit well with each other when the thickness-radius ratios are small enough. An analysis of the influences of boundaries on the time-history response of cylindrical shells indicates that the peak displacement is closely related to the degrees of freedom of boundaries. The influences of the length-radius ratios and the thickness-radius ratios on the peak displacement are further investigated

    Efficient targeted influence minimization in big social networks

    Get PDF

    A Novel Adaptive Neural Network Constrained Control for Multi-Area Interconnected Power System with Hybrid Energy Storage

    Get PDF
    This paper concentrates on the problem of control of a hybrid energy storage system (HESS) for an improved and optimized operation of load-frequency control (LFC) applications. The HESS consists of a supercapacitor served as the main power source, and a fuel cell served as the auxiliary power source. Firstly, a Hammerstein-type neural network (HNN) is proposed to identify the HESS system, which formulates the Hammerstein model with a nonlinear static gain in cascade with a linear dynamic block. It provides the model information for the controller to achieve the adaptive performance. Secondly, a feedforward neural network based on back-propagation training algorithm is designed to formulate the PID-type neural network (PIDNN), which is used for the adaptive control of HESS system. Meanwhile, a dynamic anti-windup signal is designed to solve the operational constraint of the HESS system. Then, an appropriate power reference signal for HESS can be generated. Thirdly, the stability and the convergence of the whole system are proved based on the Lyapunov stability theory. Finally, simulation experiments are followed through on a four-area interconnected power system to demonstrate the effectiveness of the proposed control scheme

    Semi-analytical solution for dynamic behavior of a fluid-conveying pipe with different boundary conditions

    Get PDF
    This paper analyzes the dynamic behavior of a fluid-conveying pipe with different pipe end boundary conditions. The pipe is considered to be an Euler-Bernoulli beam, and a motion equation for the pipe is derived using Hamilton's principle. A semi-analytical method, which includes the differential quadrature method (DQM) and the Laplace transform and its inverse, is used to obtain a model for the dynamic behavior of the pipe. The use of DQM provides a solution in terms of pipe length whereas use of the Laplace transform and its inverse produce a solution in terms of time. An examination of the results of sampling pipe displacement at different numbers of sample points along the pipe length shows that the method we developed has a fast convergence rate. The frequency and critical velocity of the fluid-conveying pipe derived by DQM are exactly the same as the exact solution. The numerical results given by the model match well with the result obtained using the Galerkin method. The effect on pipe displacement of the pipe end boundary conditions is investigated, and it increases with an increase in the edge degrees of freedom. The results obtained in this paper can serve as benchmark data in further research

    Preoperative CT-guided ICG injection locating SPNs

    Get PDF
    Background: Localization of small pulmonary nodules (SPNs) is challenging in minimally invasive pulmonary resection, and it is unknown whether computer tomography (CT) guided by indocyanine green (ICG) can provide accurate localization with minimal complications. Methods: We performed a retrospective study of patients who underwent thoracoscopic resection of pulmonary nodules after CT-guided preoperative localization with ICG from May 2019 to May 2020. Demographics, procedural data, postoperative complications, and pathologic information, were collected, and an analysis of the accuracy and complications after surgery was conducted. Results: In 471 patients, there was a total of 512 peripheral pulmonary nodules that were ≤2 cm in size. The average time for CT-guided percutaneous ICG injection for localization was 18 minutes, and 98.4% (504/512) of the nodules were successfully localized. The average size of the nodules was 9.1 mm, and the average depth from the pleural surface was 8.9 mm. Overall, 5.9% (28/471) of the patients had asymptomatic pneumothorax after localization, but none needed a tube thoracostomy. All the nodules were resected using video-assisted thoracoscopy technique. Conclusions: Preoperative CT-guided transthoracic ICG injection is safe and feasible for localization of small lung nodules for minimally invasive pulmonary resection. This technique should be considered for preoperative CT-guided localization of small lung nodules
    • …
    corecore