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Abstract
An online social network can be used for the diffusion of malicious information like deroga-
tory rumors, disinformation, hate speech, revenge pornography, etc. This motivates the study
of influence minimization that aim to prevent the spread of malicious information. Unlike
previous influence minimization work, this study considers the influence minimization in
relation to a particular group of social network users, called targeted influence minimization.
Thus, the objective is to protect a set of users, called target nodes, from malicious informa-
tion originating from another set of users, called active nodes. This study also addresses two
fundamental, but largely ignored, issues in different influence minimization problems: (i)
the impact of a budget on the solution; (ii) robust sampling. To this end, two scenarios are
investigated, namely unconstrained and constrained budget. Given an unconstrained budget,
we provide an optimal solution; Given a constrained budget, we show the problem is NP-
hard and develop a greedy algorithm with an (1 − 1

e
)-approximation. More importantly, in

order to solve the influence minimization problem in large, real-world social networks, we
propose a robust sampling-based solution with a desirable theoretic bound. Extensive exper-
iments using real social network datasets offer insight into the effectiveness and efficiency
of the proposed solutions.

Keywords Social Network · Influence Minimization · Targeted Campaigns

1 Introduction

Recent years have witnessed the explosive growth of various social media sites such as
online social networks, blogs, microblogs, social news websites and virtual social worlds.
Online social networks can be used for the diffusion of not only positive information such
as innovations, news, and novel ideas, but also malicious information such as disinforma-
tion and hate speech. For example, various social media platforms can be used by radical

� Ke Deng
ke.deng@rmit.edu.au

Extended author information available on the last page of the article.

World Wide Web (2020) 23:2323–2340

Published online: 19 March 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-019-00748-z&domain=pdf
http://orcid.org/0000-0001-7005-8150
mailto: ke.deng@rmit.edu.au


organizations and their supporters for a wide range of purposes including recruitment,
propaganda, incitement to commit acts of terrorism, and the dissemination of disinformation
for terrorist purposes [4].

Research on maximizing the influence of positive information, called Influence Maxi-
mization, offers insight to social network users on how to best propagate the awareness of
products and services and has attracted substantial attention [2, 6, 10, 15]. Likewise, the
problem of reducing the influence of negative information, called Influence Minimization,
is also attracting attention [7–9, 11, 21]. One line of studies on influence minimization aims
to find a certain number of edges in social networks such that by deleting these edges, the
influence of any information is minimized at the end of the propagation process, no mat-
ter which nodes initially have the information [7–9]. Another line of studies assume that
a specific set of nodes initially have some information to be spread, The aim is then to
delete a certain number of edges or nodes such that the influence of the information is min-
imized while considering the topics of the information [21] or considering the spread of
counter-information from competitors in the same period of time [11, 16].

Unlike the above works, we propose, define, and solve a new problem of so-called
targeted influence minimization. This problem and its solutions are relevant to many appli-
cations. As we know, the mainstream online social network such as Twitter and Facebook
consists of numerous users who are highly diversified in terms of demographic, income,
occupation, personal interest, and etc. The problem of targeted influence minimization is to
protect a particular group of users in social networks from the influence of negative infor-
mation. For example, a government agent may want to shield young social network users
from pornography or recruitment to terrorism; or a company may initiate a campaign to
protect their customers from defamatory information spread by their competitors.

The targeted influence minimization problem can be briefly described as follows: given
a set of source nodes I with information to be spread and a set of target nodes T in a
social network, the aim is to find the minimum set of edges under a budget constraint such
that deleting these edges minimizes the influence from I to T . The deletion of an edge
(u1, u2) can be considered as persuading u1 does not spread any information to u2, or u2
does not accept any information from u1. Note that T may include all nodes other than I

in a social network in the extreme case. Suppose a set of nodes I regularly spread informa-
tion for business B1. A competitor B2 may initiate a campaign to prevent such information
from a set of target nodes T , such as the customers of B2. To do that, it needs find a set
of edges under the campaign budget such that these edges will not pass any information
related to B1. As a consequence, the influence from I to T can be reduced to the minimum
level.

All existing studies on influence minimization simply assume the budget is insufficient
and provide a greedy algorithm. However, this assumption is not always true. The sufficient
budget means the budget is over a threshold such that the optimization objective cannot be
further improved, i.e., information propagation has been blocked completely. We develop
an optimal solution to completely block propagated information for the target users if the
budget is sufficient. If it is, the problem is to find the minimal set of edges which, if deleted,
the influence from I to T is completely blocked. Otherwise, the problem is proved to be
NP-hard, and a greedy algorithm is developed. To meet the time requirement in handling
large social network data, a novel sampling based solution is provided. The contribution of
this paper is threefold.

– This work formally defines the targeted influence minimization. It fills the gap of
current research in the field of influence minimization in social networks.
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– This work investigates two practical scenarios of the targeted influence minimization
problem regarding budget sufficiency, which is not fully discussed yet.

– This work proposes robust solutions. In particular, the sampling technique is introduced
to solve the problem in large social networks.

This paper is a significantly extended version of publication [20]. While most sections
have been improved, the new materials focus on the following aspects. First, a complete
literature review section is included to justify the unique position of this study in the field
of social network influence minimization. Second, the proofs are provided for each of the-
orems and lemma which are essential components of this study. Third, the experimental
study has been enhanced by two additional tests on effectiveness of the proposed solutions.
Fourth, the new version explains that the proposed sampling technique can be successfully
applied using disk-based solution; it is particular useful for very large social networks which
are not always possible to be loaded in main memory.

The rest of paper is organized as follows. We first cover related work in Section 2 and
then define the problem of targeted influence minimization in Section 3. We solve the prob-
lem when the budget is unconstrained in Section 4 and when it is constrained in Section 5.
Section 6 develops an efficient sampling based solution to enable scalability to large social
networks. Finally, we evaluate the effectiveness and efficiency of our proposed solutions
using real social network data in Section 7 and conclude in Section 8.

2 Related work

This section introduces the related work in influence minimization which has attracted
attention of research community in the past decade.

2.1 Overall influenceminimization

This line of study aims to find a certain number of edges in a social network such that
deleting these edges minimizes the influence of any information [7–9]. No source nodes
and targeted nodes are specified.

Kimura et al. [8, 9] have introduced the influence minimization problem. They define the
contamination degree of a social network as the average influence of some information on
each individual node. Given a budget, they aim to find the set of social network edges such
that the number of edges does not exceed a budget and, if the selected edges are deleted, the
contamination degree of the social networks is minimized assuming the Independent Cas-
cade (IC) [6] information diffusion model. They propose a greedy algorithm that iteratively
selects the next best edge to be removed based on the reduction in the contamination degree.
To improve the processing efficiency, they estimate the contamination degree by adapting
the bond percolation method.

In [7], Khalil et al. have defined the spread susceptibility of a social network as∑
i∈V fi(S), where fi(S) is the number of nodes influenced by node i after deleting the

set of edges, S. Given a vector of information propagation probabilities and a positive inte-
ger as the budget, they aim to select a set of edges such that the number of edges does
not exceed the budget and, if the selected edges are deleted, the spread susceptibility is
minimized. They propose a greedy algorithm that computes the loss of susceptibility by
removing each edge and then deletes the one leading to the maximum loss. This operation
is performed iteratively until the budget is exhausted. They cover two information diffusion
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models, Independent Cascade (IC) and Linear Threshold (LT) [6]. If LT is applied, fi(S)

is a monotone and supermodular function; but this is not true for IC. If LT is applied, the
greedy algorithm is within (1− 1/e) of the optimal according to [12]. Wang et al. solve the
similar problem using IC [19].

2.2 Source influenceminimization

This line of study assumes that a specific set of nodes has some information to be spread.
The aim is to delete a certain number of edges such that the influence of the information
is minimized in the social network. Yao et al. [21] study this problem and Luo et al. [11]
and Song et al. [16] study the spread of counter-information from competitors in the same
period of time.

In particular, Luo et al. [11] investigate a different influence minimization problem
that considers the influences of two opposite campaigns in a given time period. They
assume that once a node becomes active to the information from one campaign, it will
not change back to be inactive and will not be active to information from another cam-
paign. Given a positive integer as the budget and a set of nodes that are active for campaign
A, they aim to select another set of nodes R with cardinality constrained by the bud-
get such that the number of nodes activated by campaign A is minimized. A greedy
algorithm is proposed with a new time-aware influence diffusion model called Continuous-
Time Multiple Campaign Diffusion Model, by which is adapted from a model introduced
by [14]. The greedy algorithm iteratively populates R with the currently best node accord-
ing to the objective function, i.e., selecting this node for campaign B will reduce the
number of nodes activated for campaign A the most. They prove the objective function
monotone and submodular. Therefore, the proposed greedy algorithm is (1 − 1/e) of the
optimal [12].

Yao et al. [21] study the influence minimization problem under the Topic-aware Inde-
pendent Cascade (TIC) diffusion model. Given a set of nodes infected by a textual message
and a budget, they aim to select a set of uninfected nodes with a cardinality that is
within the budget such that if the nodes are deleted, the number of ultimately infected
nodes by the message is minimized. Specifically, the probability that passing the mes-
sage from an infected node a to a uninfected node b considers whether b is interested in
the message based on the log of past propagation. They propose to iteratively deletes the
node with the current highest score, where the score is defined using either betweenness
or out-degree.

2.3 Remarks

With both source and targeted nodes specified, The most relevant work to our targeted
influence minimization is [21] where the edges in social networks have varying weights
for different textual messages to be spread. When the message is given and the social
network is fixed, it is same as a special case of our problem. The following two points
make this study different from existing studies. First, the existing studies including [21]
assume that the budget is insufficient even though it is not always true. This study addresses
this issue when solving the targeted influence minimization. Second, the existing studies
including [21] directly apply greedy algorithm which can also be used to solve our prob-
lem; however, we observe the greedy algorithm is hard to handle large social networks.
This motivates sampling techniques in our solution when solving the targeted influence
minimization.
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3 Problem definition

A social network is modeled as a directed graph G = (V ,E), where V is a set of nodes
and E ⊆ V × V is a set of edges. A set of nodes I ⊆ V are called active nodes and have
information to be diffused in the social network. Another set of nodes T ⊆ V , I ∩ T = ∅,
are called target nodes and are the recipients of interest.

3.1 Diffusionmodel

We assume the Linear Threshold (LT) diffusion model [6]. Thus, each edge (u, v) comes
with a weight bu,v ∈ [0, 1] to represent the influence u has on v. If a message is from u,
the influence of this message on v is added by bu,v . If the message is from all neighbors
of v, denoted as Adj (v), then influence, v.inf of the message on v is

∑
u∈Adj (v) bu,v . An

activation threshold, v.τ , is associated with v. If v.inf ≥ v.τ , v is activated; otherwise, v is
not activated.

It has been shown that diffusion in the LT model is equivalent to the process of reacha-
bility under random choice of live edges in graph instances [6]. Given a graph G = (V ,E),
each node v ∈ V selects at most one of its incoming edges at random, choosing the edge
connecting u to v with probability bu,v and not choosing any other edge with probability
1 − ∑

u∈Adj (v) bu,v; the chosen edge is called live. After processing each node in V this
way, a graph instance Gx containing only the live edges and all the nodes in G is generated.
In Gx , suppose a set of nodes I are active initially; an inactive node u ∈ V ends up as active
if and only if Gx contains a path from any node in I to u.

It has been illustrated that the process of LT model is equivalent to that of the reachability
under random choice of live edges in graph instances [6]. Given a graphG(V,E), each node
v ∈ V selects at most one of its incoming edges at random, choosing the edge connecting
u with probability bu,v and not choosing any edge with probability 1 − ∑

u∈Adj (v) bu,v;
the chosen edge is called live, and other edges are called blocked. After processing each
node in V in this way, a graph instance Gx consisting of the live edges is generated. Note
Gx contains all nodes in G. In the graph instance Gx , suppose a set of nodes I are active
initially; an inactive node u ∈ V ends up active if and only if there is a path from any node
in I to u in Gx .

The set of all graph instances that can be generated from G is denoted as χG. The influ-
ence of I to a set of nodes T ⊆ (V \ I ) in graph G under the LT diffusion model is defined
as follows:

�G(I, T ) =
∑

Gx∈χG

P rob[Gx]rGx (I, T ), (1)

where rGx (I, T ) is the number of nodes in T reachable from any node in I in graph instance
Gx , and Prob[Gx] is the probability of graph instance Gx .

Figure 1a illustrates a social network, and an instance graph using the LT diffusion
model is shown in Figure 1b. The probability of the instance graph is 0.000504. Suppose
I = {A,B,C} and T = {K, J,H }. Then K and H are reachable from A, while J is not
reachable from any node in I .

3.2 Targeted influenceminimization

A social network G = (V ,E) from which a subset of edges S ⊆ E has been deleted is
denoted as G(S).
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Figure 1 A social network and
an instance graph
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Definition 1 (Targeted Influence Minimization (TIMin)) Given a social network G =
(V ,E), a set of active nodes I ⊆ V , a set of target nodes T ⊆ {V \ I } and a positive real
number k as a budget, suppose S = {S1, S2, · · · , Sn} contains all possible sets of edges
where |Si | ≤ k, 1 ≤ i ≤ n;

– if there does not exist Si ∈ S such that �G(Si)(I, T ) = 0, TIMin aims to find the set
S∗ ∈ S such that �G(S∗)(I, T ) is minimal;

– if a set Si ∈ S exist such that �G(Si)(I, T ) = 0, TIMin aims to find a set S∗ ∈ S such
that �G(S∗)(I, T ) = 0 and |S∗| is minimal.

In the former case, the budget is insufficient to completely block the information prop-
agation from I to T . In the latter case, the budget is sufficient to do so. As an example,
consider Figure 1, where I = {A,B,C} and T = {K, J,H }. A budget k = 2 is insufficient
to completely block the information propagation from I to T . Thus, TIMin aims to find
the set of edges S∗ such that �G(S∗)(I, T ) is minimized. Given a budget of k = 10, there
are many sets of edges that, if deleted, will completely block the information propagation
from I to T . In this situation, among all such sets of edges, TIMin aims to find one with the
minimum number of edges.

Given active nodes I and target nodes T , we initially need to determine whether the
budget k is sufficient or not since this is not known in advance. This leads to the following
processing framework.

1. The first stage solves the influence minimization with am unconstrained budget, defined
as follows.

min |Si |
s.t . �G(Si)(I, T ) = 0 ∧ Si ⊂ S (2)

If |Si | ≤ k, the problem is solved by returning Si because the budget is sufficient to
completely block the information propagation from I to T ; otherwise, we go to the
second stage.

2. The second stage solves the influence minimization with a budget k, defined as follows.

min
Si

�G(Si )(I, T )

s.t . |Si | ≤ k ∧ Si ⊂ S (3)

4 Budget unconstrained solution

We first examine whether the budget is sufficient to completely block the information prop-
agation from I to T . For this purpose, TIMin with unconstrained budget (i.e., k = ∞) is
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solved as a minimum cut or maximum flow problem. Let s and t be a source node and sink
node in a flow network, respectively.Maximum flow problem is to maximize the amount of
flow from s to t , i.e., to route as much flow as possible from s to t .

In optimization theory, the max-flow min-cut theorem states that the maximum amount
of flow passing from the source to the sink is equal to the total weight of the edges in
the minimum cut, i.e., equal to the smallest total weight of the edges that, if removed,
would disconnect the source from the sink [13]. If multiple sources and multiple sinks
exist, the problem is transformed into a single-source and single-sink maximum flow
problem by adding two new nodes: one connecting all source nodes and the other con-
necting all sink nodes; the weights of the new edges connected to the two new nodes
are ∞.

Lemma 1 Given a social network G = (V ,E), a set of source nodes I ⊆ V , and a set
of target nodes T ⊆ {V \ I }, the influence minimization is equivalent to the minimum cut
problem if budget k = ∞.

Proof By Definition 1, influence minimization with an unconstrained budget is to identify
the minimum set of edges S∗ to delete such that by deleting which �G(S∗)(I, V ) = 0. As
introduced in Section 3, the influence from source nodes is computed using (1). If there is
path from any node in I to any node in T , a graph instance exists where Prob[Gx] > 0
and rGx (I, T ) > 0, and thus �(I, V ) > 0. So, �(I, V ) = 0 holds only if all possible paths
from any node in I to any node in T are blocked. In this situation, no instance graph may
have a path from any node in I to any node in T such that �G(S∗)(I, V ) = 0.

Therefore, influence minimization with an unconstrained budget is to find a minimum set
of edges that, if deleted, disconnect I and T . This is equivalent to the single-source, single-
sink minimum cut problem if I and T each contain one node; otherwise, it is equivalent
to the multi-source, multi-sink minimum cut problem, which can be transformed into a
single-source, single-sink minimum cut problem as discussed above.

In Figure 2, influence minimization with an unconstrained budget is modeled as a single-
source, single-target minimum cut problem. Specifically, a node s is added and linked to
all the active nodes in I , and a node t is added and linked to all the target nodes in T . The
weight of each edge is infinity.

The minimum cut or maximum flow problem is well studied [13]. We adopt Dinic’s algo-
rithm to solve this problem [3]. Dinic’s algorithm uses the concept that a flow is maximum
if no path from s to t exists in the residual graph. Given a flow network, if there exists an
s-t path, then the algorithm constructs a residual graph based on by applying for the weight

Figure 2 Influence
minimization, unconstrained
budget
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reduction on each edge in the s-t path. The weight to be reduced is the smallest weight on
the edges in the path and the updated weights are called forward capacity. Meanwhile, the
residual graph also records a backforward capacity for each edge in the s-t path. The back-
forward capacity for an edge increments by 1 if its forward capacity decreases by 1 where
the initial backforward capacity on each edge is zero.

To improve the efficiency, Dinic’s algorithm further proposes the concept of level graph.
Each node u in the level graph has an attribute with its shortest distance to s in the
residual graph, which maintains information to accelerate the computation of s-t path.
If there exists an s-t path left in the residual graph, then it updates the residual graph
as well as the level graph. The algorithm stops when no s-t path is left in the residual
graph.

The complexity of Dinic’s algorithm is O(min{V 2/3, E1/2}E) if I and T each contains
only one node; otherwise, it is O(E3/2). In Figure 2, the set of edges returned is S∗ =
{(A,D), (B,D), (E, F )} and |S∗| = 3. If budget k ≥ |S∗|, the budget is sufficient to
completely block the influence from I to T . The influence minimization is solved and S∗
is returned. If the budget k < |S∗|, the budget k is insufficient and thus we continue the
process in the next section.

5 Budget constrained solution

Theorem 1 TIMin with an insufficient budget k is NP-hard.

Proof Maximum coverage problem is known NP-hard [18]. It is a special case of TIMin
with an insufficient budget k. Given a number k, elementsU , and a number of sets S (the sets
may have elements in common), the maximum coverage problem aims to select at most k

sets such that the maximum number of unique elements inU are covered, i.e., the cardinality
of the union of the selected sets is maximized. In TIMin, a live-path (i.e., a path consisting
live edges) from the source nodes I to the target nodes T in instance graphs corresponds to
a unique element u in U . An edge ei in graph G(V,E) correspond to a set Si in S. The set
Si contains all the live-paths from I to T which, if e is removed, are blocked. Even though
it is not true in TMin, let us consider the simplified situation where the corresponding set
of each edge is known in advance and all live-paths have the uniform probability. In this
simplified situation, TIMin with insufficient budget k aims to select at most k edges which,
if deleted, the maximum number of live-paths from I to T are blocked. It is equivalent to
the maximum coverage problem. Since TMin is more complex, identifying the best k sets
in the maximum coverage problem is a special case of TIMin with insufficient budget k. So,
TIMin with budget k is a NP-hard problem

Due to Theorem 1, we provide a greedy algorithm to solve targeted influence minimiza-
tion with an insufficient budget.

5.1 Greedy algorithm

The greedy algorithm searches for a set of edges S ⊆ E such that |S| ≤ k and the following
objective function is maximized.

f (S) = �G(I, T ) − �G(S)(I, T ), (4)

where �G(., .) is computed using (1).
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The greedy algorithm proceeds iteratively. Initially, S is empty. In each iteration, it
computes the value of each edge e in G(S) as follows.

value(e) = �G(S)(I, T ) − �G(S′)(I, T ), (5)

where S′ = S ∪ {e}. The value of e, value(e), is the reduction of influence from I to
T with and without e in G(S). Among all edges, the one with the maximum value, say
e∗, is deleted. Then e∗ is inserted into S, and the remaining budget is decremented by 1.
The process terminates when the remaining budget reaches 0. The greedy algorithm is an
(1− 1

e
)-approximation (≈0.632-approximation) since the objective function is non-negative,

monotonous, and submodular [7].

6 Sampling-based solution

It is prohibitively expensive to directly generate all graph instances and compute the value
of each edge in each iteration. Therefore, we devise a sampling-based solution. The solution
is inspired by a recent influence maximization study [17], but significant adaptions are
required.

Reverse influence set (RIS) Tang et al. [17] aim to select at most k nodes with maximum
influence in a social network. The method is based on RIS that computes the influence
of nodes using graph instances. Specifically, the reverse reachable (RR) node set for each
node in each graph instance is generated. Given a node v in graph instance Gx , the RR set
contains all nodes in Gx that can reach v. Using the sampling method, a number of nodes
are randomly selected from V ; the RR set for each node is generated using a randomly
selected graph instance. So, a number of random RR sets are obtained. If a node u has a great
impact on other nodes, u will have high probability of appearing in the random RR sets.
As a result, the problem is transformed to the maximum coverage problem of identifying at
most k nodes that cover the maximum number of the random RR sets. It has been shown

that if the number of random RR sets θ is no less than (8 + 2ε)|V |
ln |V |+ln(

|V |
k

)+ln 2

OPTkε
2 , then

RIS returns an (1 − 1/e − ε)-approximate solution with at least 1 − |V |−1 probability
(ε ∈ (0,1)) [1].

6.1 Minimum influence path

RIS cannot be applied to our problem without significant modification due to two reasons.

– The random RR set is about node-to-node reachability. In our problem, however, we
delete the edges to make reachable-nodes unreachable. While it is straightforward to
determine node-to-node reachability, it is more difficult to identify edges the deletion
of which makes reachable-nodes unreachable. The reason is that there may be many
different paths between two reachable nodes, so deleting an edge does not necessarily
block the reachability.

– The random RR set is for the reachability of any node. In our problem, however, only
the source nodes I and the target nodes T are relevant.
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We propose a novel sampling-based method called Minimum Influence Path (MIP) to
solve TIMin. The idea is to exploit the fact that each node in a graph instance under the LT
diffusion model has at most one incoming edge. Specifically, each node v ∈ V in the graph
instance generation process picks at most one of its incoming edges at random, selecting
the edge from w ∈ Adj (v) with probability bw,v , and selecting no edge with probability
1 − ∑

w∈Adj (v) bw,v . Figure 1b shows an example.
As a result, for two nodes v and u, if v is reachable from u in the graph instance, it is easy

to observe that the following properties hold: (i) there is one and only one path from u to
v in the graph instance, and (ii) the path is acyclic. Therefore, the information propagation
from u to v in this graph instance can be blocked by removing any edge in the path. On the
other hand, if v is not reachable from u in the graph instance by deleting an edge e, this
does not indicate that v is not reachable from u in other graph instances. However, if v is not
reachable from u in many graph instances by deleting e, this implies that the information
propagation from v to u is less likely to happen even though it is not impossible. So, the
problem is to delete those edges that block the paths from source nodes to target nodes are
blocked in many graph instances.

On the other hand, if v is not reachable from u in the graph instance, the informa-
tion propagation is blocked without deleting any edge. This may occur for two reasons.
First, v is not reachable from u in graph G. Second, v is not reachable from u in this
graph instance. If v is not reachable from u in many graph instances, this implies that
the information propagation from v to u is less likely to happen even though it is not
impossible.

Given a node in v ∈ T , the minimum influence path in a graph instance is the path to
v from any node u ∈ I with the fewest edges. Figure 3a shows a graph instance where
I = {u1, u2, u3} and T = {v1, v2, v3, v4}. The minimum influence path from I to each
target node is shown in Figure 3b. The minimum influence path to v1 is (e1, e2, e3). Cutting
any edge in the minimum influence path will prevent I from reaching v1 in this graph
instance. Intuitively, the edge appearing in more minimum influence paths is more likely to,
if deleted, lead to the more influence reduction. In this graph instance, edge e5 appears in the
minimum influence paths of v2 and v3 such that deleting e5 prevents I from reaching two
nodes. If deleting e5 prevents I from reaching many nodes in T in other graph instances, e5
is likely to be the edge in the solution of MIP.

6.2 Sampling-based greedy algorithm

The pseudo-code of the sampling-based greedy algorithm is presented in Algorithm 1. First,
we randomly generate a graph instance in lines 5–7. One node in T is selected randomly in

Figure 3 Reverse influence paths
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line 8, and the minimum influence path of this node is generated in line 9. By this way, θ

nodes have been sampled, and the minimum influence path is generated for each of them.
Note that a graph instance is more likely to be selected if the probability of the graph
instance is high. If deleting an edge can prevent I from reaching many nodes in T in many
graph instances, this edge is more likely to appear in the minimum influence paths. So, the
problem is transformed to the maximum coverage problem of selecting at most k edges to
cover the sampled nodes as many as possible. In our solution, we assume that the specified
budget is sufficient, otherwise, the budget unconstrained solution is applied. To this end,
the incremental solution of maximum coverage problem, known as incrementalMC(M), is
applied in line 12.

The maximum coverage problem is solved using an adapted greedy algorithm that is
aware of the budget sufficiency. The pseudo-code is presented in Algorithm 2. The gen-
erated minimum influence paths and the corresponding reverse minimum influence paths
are used. For each minimum influence path, the algorithm maintains a node v ∈ I and
the list of the edges in the path. For each reverse minimum influence path, it main-
tains an edge e and a list of the nodes each of which has e in its minimum influence
path. The reverse influence minimum paths are constructed while the influence minimum
paths are generated (line 2). First, the edge with the longest reverse minimum influence
paths is moved to solution S∗ (lines 7–8). Then, the nodes in the reverse minimum influ-
ence path are processed by finding their minimum influence paths and removing them
(line 9); for any edge in the minimum influence paths, its reverse minimum influence paths
is found and updated (lines 10–13). The process is repeated until k edges are selected
(line 4) or no complete path exists in the remaining influence minimum paths (line 5).
The budget sufficiency awareness is implemented by checking whether no complete path
exists.
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Theorem 2 If |S∗| ≤ k, the probability that the information propagation from I to T is
completely blocked is at most 1

n
; the |S∗| is an 1

n
-approximation of the optimal solution.

Proof The proof is based on Theorem 3.1 provided by [5]. In the theorem, consider an
arbitrary unweighted multigraph G = (V ,E) with edge connectivity λ and choose a
subset S ⊆ E by indicating each edge e ∈ E in set S independently with probability p. If
p ≥ 20logn

λ
then the sampled subgraph G′ = (V , S) is connected with probability at least

1 − 1
n
.

In this work, each reverse influence path can be modeled as a small graph. Given sets
I and T of source and sink nodes, we build a multigraph. As such, the targeted influence
minimization from I to T can be transformed into reducing the connectivity of the sampled
subgraph G′. Cutting the selected subset S can guarantee that G′ is connected with prob-
ability at most 1

n
if |S| ≤ k. Otherwise, the probability of being disconnected is at most

1 − k
|S| (1 − 1

n
).

6.3 Disk-based path generation

Even though the sampling-based solution is used, it generates θ graph instances. Each graph
instance contains all nodes of social network and the selected edges between them. For very
large social networks, it is not always possible to load the entire graph instance in main
memory. This requires disk-based solution such that the target influence minimization can
still be performed. The original social network is stored on disk. The random minimum
influence path for each randomly selected node in T is generated without constructing the
graph instance. On the disk, the social network is represented as a list of < v, u > for each
node v where u is an adjacent node of v. An example for the social network is shown in
Figure 4 .
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Figure 4 Disk-based solution

Given a randomly selected node v ∈ T , the page containing v is retrieved. A B+ can
be constructed to quickly identify the page ID on which the adjacency information of node
v is stored. Once the page is loaded in memory, the adjacent nodes of v are processed.
That is, choosing an adjacent node u ∈ Adj (v) with probability bu,v and not choosing any
node with probability 1 − ∑

u∈Adj (v) bu,v . If an adjacent node v′ is selected, it is processed
in the same way as v; if no adjacent node is selected, the minimum influence path of v is
found.

For each adjacent node v′ selected, two checks are needed. First, we need determine
whether it is the first time that v′ is selected in the minimum influence path. If not, select-
ing v′ is illegal since a node selected more than once will lead to cycles in the minimum
influence path. Second, we need determine whether v′ is in I . If yes, the minimum influ-
ence path of v is found; otherwise, the minimum influence path of v grows as discussed. For
example in Figure 4, node J is randomly selected. The edge from G to J is chosen, then
the edge from D to G is chosen, and finally the edge from D to A is chosen. The minimum
influence path of J is J ← G ← D ← A.

The total number of edges accessed for generating the minimum influence paths is∑θ
i=1 l where θ is the number of instance graphs and l is the number of edges accessed

when generating the minimum influence path in the ith graph instance. In the worst case
scenario, when forming each minimum influence path, the entire graph will be accessed.
So, the I/O complexity of the algorithm isO(θn) where n is the number of disk pages occu-
pied by the graph G. In practice, some trick can be applied to optimize the I/O. One can try
to put adjacent nodes (or edges) in the same page such that, suppose a node v is selected;
if retrieving the page where v resides, the edges directly or indirectly pointed to v are more
likely to be found in the same page. For example in Figure 4, if J ← G and G ← D

are in the same page, it is unnecessary to retrieve page 3 for the minimum influence path
J ← G ← D ← A.

7 Experimental study

We evaluate the effectiveness and efficiency of our proposed algorithms by comparing with
two heuristic algorithms called Random and Weight. Random selects edges randomly until
budget k is used.Weight selects edges with largest edge weights. Their performance are eval-
uated in different parameter settings using three real-world networks:Wikiwith 7,115 nodes
and 103,689 edges, Ego-twitter with 23,370 nodes and 33,101 edges, and Epinions with
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Figure 5 Remaining influence from I on T when varying k

75,879 nodes and 508,837 edges. All the three datasets are downloaded from the Stanford
Dataset Collection.1

7.1 Evaluation of effectiveness

Varying k: Figure 5 shows the experimental results when varying k while the source node
set I and the target node set T are fixed in size at 500 unless stated otherwise. The source
and target nodes are selected randomly.

The study shows that Greedy and Sampling are able to greatly reduce the influence
of I on T for all three datasets given a sufficiently large value of k. When k is above
100, both solutions are able to reduce the influence by up to 80%. Next, Random and
Weight can slightly reduce the influence in Wiki. They do not work for Ego-twitter and
Epinions. Random and Weight cannot block the influence well because the selection of
their deleted edges are not relevant to target users. However, this matter is taken into
account in Greedy and Sampling. So the influences minimized by Greedy or Sampling
are always larger than that of Random orWeight.

Varying T : We randomly select 500 nodes as the source node set I and set k as 500.
Figure 6 shows the results when we increase the target node set from 100 to 500 nodes.
Greedy and Sampling are still able to reduce the remaining influence from I on T by
deleting at most 500 edges. Random is the worst for all datasets. Weight performs better
than Random in Wiki only. The resultant observation is quite interesting. Our proposed
solutions Greedy and Sampling are quite stable at blocking the influence of the source
nodes on the target nodes at a certain level.

Varying I : Figure 7 shows the results when we vary the size of the source set I for
k = 500 and |T | = 200. In this study, Greedy and Sampling can reduce the remaining
influence to 0.2 in Wiki, which is a dense graph. For Ego-twitter and Epinions, their
performance varies more. Thus, Greedy performs better on Ego-twitter, and Sampling
does well on Epinions. However, Random and Weight have the worst performance in all
three datasets.

Budget Unconstrained Evaluation: As shown in Figure 8, we can see that the influence
from I to T can be blocked completely by deleting a certain number of edges. When
|I | = 500, |T | = 100, it requires 243 edges for Ego-Twitter. But more edges must be
deleted for Epinions and Wiki because Ego-Twitter dataset is much sparse than Epinions
or Wiki datasets. In order to minimize the influence of I on T in the same parameter
settings, it has to delete more edges so that all the paths connecting from I to T can be
disconnected. However, when |T | becomes large, it is quite challenging to completely

1http://snap.stanford.edu/data/
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Figure 6 Remaining influence of I on T when varying |T |

block the initial users’ influence on the target users because a large number of edges need
to be deleted. Our sampling solution can be applied to block the majority of the influence.

7.2 Evaluation of efficiency

We evaluate the efficiency of the four solutions when varying k, T , and I . Figures 9, 10
and 11 present the results. Our sampling solution is capable of outperforming the greedy
solution by 2 orders of magnitude in all datasets. Both solutions are stable in performance
when we increase k. But the time cost of Greedy grows with the increase of T or I . Com-
pared with Greedy and Sampling, Random andWeight have the best efficiency because their
deleted edges can be found without too much computation. But, as we have seen, their lack
of effectiveness render them of little use. Therefore, the sampling solution is the best choice
for targeted influence minimization in terms of effectiveness and efficiency.

7.3 Evaluation of I/O cost

For very large social networks, it is not always possible to load the entire graph instance
in main memory. When the disk-based solution is applied as discussed in Section 6.3, the
original social network is stored on disk. In this situation, the I/O cost is tested. We evaluate
the number of I/Os when varying T and I on three different datasets as shown in Figures 12.
Two situations are compared. One is denoted as Sampling where the edges are randomly
stored in different pages, and the other is denoted as Sampling Opt which tries to store
adjacent nodes in the same page by browsing the graph in width-first manner. In all tests,
we suppose no retrieved page will be maintained in memory for reuse.

We observe, Sampling Opt outperforms Sampling by 2 orders of magnitude on all
datasets and in all settings of I and T . It is interesting to note that in situations of both
Sampling and Sampling Opt the number of I/O remains the same in large when the size
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Figure 12 I/O cost when varying both I and T

of I and T increases. As discussed in Section 6.3, it is because that the I/O complexity is
determined by θ , the number of instance graphs in the sampling-based algorithm.

At the same time, the increased size of T or I leads to the decrease of length of influence
paths and hence the average number of edges accessed tends to decrease when generating
the minimum influence paths. Consequently, we can observe a slight but noticeable decrease
of I/O cost when the size of T or I increases.

8 Conclusion

In this work, we propose and formalize the problem of targeted influence minimization in
social networks that has not previously been studied. We present different solutions that
address the computational challenges associated with this problem. We report on empirical
studies showing that the proposed solution is capable of quickly blocking 80% or more the
influence of source users on target users. The proposed sampling-based solution is efficient
when applied to large scale social networks. This is very important because system need to
be able to quickly identify the set of edges to be deleted in order to block the source users’
influence. A less efficient solution may enable the source users to activate additional users as
new source users, who can then spread the malicious information and this way influence the
target users. In the future study, we will adapt the techniques developed in this work to infor-
mation minimization where the temporal factor and the information content are relevant.
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