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A Novel Adaptive Neural Network Constrained
Control for Multi-area Interconnected Power

System with Hybrid Energy Storage
Dezhi Xu, Member, IEEE,Jianxing Liu,Member, IEEE,Xing-Gang Yan, and Wenxu Yan

Abstract—This paper concentrates on the problem of control
of a hybrid energy storage system (HESS) for an improved and
optimized operation of load-frequency control (LFC) application-
s. The HESS consists of a supercapacitor served as the main
power source, and a fuel cell served as the auxiliary power
source. Firstly, a Hammerstein-type neural network (HNN) is
proposed to identify the HESS system, which formulates the
Hammerstein model with a nonlinear static gain in cascade with
a linear dynamic block. It provides the model information for
the controller to achieve the adaptive performance. Secondly, a
feedforward neural network based on back-propagation training
algorithm is designed to formulate the PID-type neural network
(PIDNN), which is used for the adaptive control of HESS system.
Meanwhile, a dynamic anti-windup signal is designed to solve the
operational constraint of the HESS system. Then, an appropriate
power reference signal for HESS can be generated. Thirdly, the
stability and the convergence of the whole system are proved
based on the Lyapunov stability theory. Finally, simulation
experiments are followed through on a four-area interconnected
power system to demonstrate the effectiveness of the proposed
control scheme.

Index Terms—Load-frequency control (LFC), hybrid energy s-
torage system (HESS), Hammerstein network identification,PID-
type neural network (PIDNN), dynamic anti-windup, adaptive
control

I. I NTRODUCTION

FREQUENCY stability is an important index of power
quality in power system. Any sudden changes of load may

lead to the changes of the tie-line power and the fluctuation
of the system frequency. Load frequency control (LFC) is one
of the main measures to guarantee the power quality. The
purpose of the LFC is to maintain the system frequency at the
nominal value and minimize the tie power between different
control areas [1-9]. However, LFC can not achieve sufficient
control performance even for small load disturbance, while
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the system nonlinearity such as the generation rate constraint
and dead band of governor are considered, which may lead to
unsatisfactory frequency deviations and tie power oscillation
[1-2]. System oscillation may be expanded in the system and
even causes the power outages. The supplement of a small-
capacity energy storage system to power system can effectively
promote the situation above [1-3]. Different types of advanced
energy storage technologies can be applied in LFC, such as
battery energy storage system [10], electrochemical energy
storage [11], superconducting magnetic energy storage [12-
14], supercapacitor energy storage [1, 3, 15], pumped storage
[16], and flywheel energy storage [17].

Among the above technologies, the fuel cell has the char-
acteristics of low operating temperature, quick start, good
stability, no radiation and air pollution [18-20]. However,
the dynamic response of fuel cell has a certain delay. An
energy management unit with an energy storage device is
required to improve the dynamic performance of the fuel cell
generally, reduce the damage caused by rapid load change
and prolong the service life [21]. Supercapacitor has the high
power density, and its energy can be quickly released and
stored [22, 23]. The lifetime of supercapacitor is measuredin
decades with no life degradation owing to the frequent cycling
[1]. The application of a small-capacity HESS composed of
fuel cell and supercapacitor to an interconnected power system
for promoted LFC is an effective method, in which an inner
control is used to exchange the desired power between the
hybrid energy storage system (HESS) and the power system
for improving the dynamic characteristics of LFC. The main
controller objective is to regulate the frequency and tie-power.
But the voltage of HESS must obtain its nominal value after
dealing with a load disturbance for constant control [24].

In addition, the constraints and the restrictions of the small-
rating HESS limited by its converter need to be considered
[25]. In other words, the problem of control input limitations
always exists in practical systems. The control signals are
generally required to generate power through the actuator to
drive the controlled system. However, its output amplitudecan
not be infinitely enlarged due to the physical limitation, which
is called input saturation problem [26-27]. If this limitation is
not taken into consideration, the characteristic of saturation
may lead to undesired behavior even instability in closed loop
system. To solve this nonlinear problem of input saturation
of controller, the anti-windup compensation design method
has been widely used [18, 26-30]. However, a large number
of research results are focused on continuous-time systems
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instead of discrete-time systems.
Power systems are complicated multi-input multi-output

high-order systems. Most advanced control methods can not
be applied to the actual system due to the lack of accurate
mathematical model. Therefore, system identification has be-
come one of the core contents of the control system, which
has received more and more attention in the power generation
system [31]. For identification of nonlinear systems, Hammer-
stein and Wiener models have proposed the popular method
for system modeling [32-37]. The Hammerstein model consists
of a nonlinear static block in cascade with a linear dynamic
block, while the Wiener model is composed of the same blocks
but in the reverse order [32]. In order to obtain appropriate
performance and adaptive ability, neural networks were used in
the Hammerstein and wiener models to identify the parameters
online for every sampling period [32-34].

For the LFC in power system, the conventional PID con-
troller is one of popular control method widely used in
engineering practice, because of the advantages of the simple
and convenient structure, and no need for detailed information
about the system dynamics [38]. However, it is very difficult
to determine the satisfactory parameters of PID control in
the presence various nonlinearities and uncertainties, which
makes the dynamic performance of the PID controller to be
relatively poor with the large overshoot, long setting timeand
oscillation with the transient frequency. In addition, thePID
controller does not have any optimization calculation. Thus it
does not have capability of frequency modulation unit fully
in the frequency modulation process. As the development of
advanced control algorithms, neural network based control
method has been used in industry applications successfully,
such as PID neural network [32, 39] due to the characteristics
of self-learning, self-adaptation and self-organizing. The PID
neural network can automatically identify and adjust the
parameters of controller system.

Motivated by aforementioned investigation, two type neural
networks are proposed to design a Hammerstein model iden-
tifier and a PID controller, respectively. One is Hammerstein-
type neural network (HNN), which formulates the Hammer-
stein model with a nonlinear static gain in cascade with a linear
dynamic block. The other one is a PID-type neural network
(PIDNN) that formulates a conventional PID controller. The
HNN is designed to learn the power system with the HESS
from the input-output data, which provides the model informa-
tion online to update the parameters of the PIDNN controller,
so that the controller has the abilities of self-learning and self-
adaptation. Then, the PIDNN controller supplies the desired
and appropriate power flow reference for the HESS to improve
unsatisfactory frequency deviations and tie power oscillation.
Moreover, considering the capacity of HESS, a dynamic anti-
windup signal is designed to solve the operational constraints
of HESS. Furthermore, the stability analysis of the whole
closed-loop system is presented for the HNN and PIDNN
controllers by Lyapunov theory. The simulation results demon-
strate the effectiveness of the proposed control scheme, which
reduces the frequency and tie-power deviations tremendously
compared with the conventional PID controller with HESS and
the LFC without HESS. The proposed control scheme can be

applied to other mechanical and electrical systems.

II. HESSFOR MULTI-AREA INTERCONNECTED POWER

SYSTEM

In this paper, LFC of four-area interconnected power system
with HESS is taken as the research object. To demonstrate the
effectiveness of the designed control scheme, a four area power
system model with governor and reheating steam turbine is
developed, which is shown in Fig. 1.
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Fig. 1. Schematic of the four-area interconnected power system with HESS.

A. Model of Load Frequency Control

Power system is a complex nonlinear dynamic system,
because the power system only subjects to small load in-
terference under normal operating conditions. The common
method to achieve the system model is linearization around
the operating point. Then the dynamic model of the power
system can be represented by the linearized model near the
operating point. An improvedIth (I = 1, 2, 3, 4) control area
of interconnected power system is shown in Fig. 2 [1]. The
linearized model includes governor, reheating steam turbine
and generator. Each part of the model in Fig. 2 is expressed
as follows:

The model of governor is expressed as follows:

GgI =
1

TgIs+ 1
(1)

The model of generator is expressed by:

GpI =
KpI

TpIs+ 1
(2)

The model of reheating steam turbine and generator is ex-
pressed by:

GtI =
cTrIs+ 1

(TrIs+ 1) (TTIs+ 1)
(3)

whereTgI is time constant of governor,TpI is time constant
of generator,KpI is generator gain,TrI is time constant of
reheating device,TTI is turbine time constant,c is the gain
of reheating device,RI is droop characteristic,ulfcI is the
control variable of LFC,∆PdI is the load disturbance,TIJ
is the interconnection constant between the controlI and
control areaJ 6= I, (J = 1, 2, 3, 4), KAFI is the proportional
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negative feedback coefficient of frequency deviation whichis
used to improve the system performance [1],PCI is the power
delivered by HESS to the control area [3].

The aim of load frequency control of multi-area intercon-
nected power system is to ensures not only the frequency
deviation of each region to return to zero, but also to adjust
the interconnected power of tie-line to the desired value.
Therefore, load frequency control of multi-area power system
adopts area control error (ACE) as feedback variable to meet
the above two control objectives. The ACE ofIth control area
is defined as following:

ACEI = ∆PtieI + ψI∆fI (4)

where ∆fI is the frequency deviation,∆PtieI is the in-
terchanged power of tie-line,ψI is the frequency deviation
constant.

Then the feedback control form can be expressed as:

ulfcI = −
KI

s
ACEI (5)

whereACEI is the area control error ofIth control area,KI

is control constant ofIth control area.

B. Hybrid Energy Storage System

The details of the power conversion system applied for
interfacing the HESS are shown in Fig. 3. The control strategy
of the AC/DC converter is to stabilize the DC-link voltage

and connect the HESS system. The control strategy of the
DC/DC converter is to realize the bidirectional power flow
between the power grid and the HESS according to the given
reference power signal. The control strategy of the above two
converters is similar to the work in [3]. In addition, fuel cell
serving as auxiliary power source is used to supply energy for
supercapacitor by the boost circuit when the energy levels of
supercapacitor exceed its normal range.

The HESS topology used in our paper has the following
advantages: 1) Fuel cell runs without pollution and the only
product of the process is water; 2) Its short-time overload
capacity can reach 200% rated power; 3) The power generation
efficiency of fuel cells is high, and it directly converts chemical
energy into electrical energy without the restriction of the
Carnot cycle; 4) A wide range of fuel types. Fuel cells are
powered by hydrogen and oxygen, where the oxygen can be
directly obtained from the air, and the fuel hydrogen can be
made from fossil fuels such as natural gas, methanol, ethanol
(alcohol), oil and coal; 5) Ultracapacitor has the characteristics
of large power density, short charge and discharge time, high
reliability and long cycle life.

The HESS interfaced with four-area interconnected power
system respectively, are used to restrain the electromechanical
oscillations, control frequency and interchanged power of
tie-line deviation to zero. The proposed controller of this
paper needs to command the HESS system to provide a
fast power response when a load perturbation occurs in each
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interconnected power system.
1) Mode of Supercapacitor:Supercapacitor is a new en-

ergy storage unit with high power density, large capacity
and many cycles. The supercapacitor of HESS applied in
this paper is composed of a number of Maxwell Boostcap
modules BMOD0018-P390 (18F/390V) yielding a structure
constituting a structure of 6F/1170V 750kW [3, 15]. The DC-
bus voltage of line-side converter is assumed to maintain to
at 2.5kV. The nominal voltage of supercapacitorVC is chosen
to be 925V. In addition, the supercapacitor is operating at the
center energy levels of maximum 1170V and minimum 585V.

As given in Fig. 3, the PI controller converts the power
command received from proposed controller into a current
command for the DC/DC converter to control the energy of
supercapacitor, to achieve the desired current tracking. The
following expression gives the average output voltageVSC of
DC/DC converter in terms of DC-link voltageVDC [3]:

VSC = mVDC (6)

The modulation coefficientm ∈ [0, 1] is defined as:

m =

{

D , buck mode

1−D , boost mode
(7)

whereD represents the duty cycle of the buck/boost switch,
which depends on the operation mode.

2) Mode of Fuel Cell:The dynamic response of fuel cell
has a little delay, because the inner part of the fuel cell is
an electrochemical reaction. Sudden changes in load will lead
to exceeding standard of some indicators and affecting their
service life. So an energy management unit with an energy
storage device is required to improve the dynamic performance
of the fuel cell and to reduce the damage caused by rapid load
change and prolong the service life.

In this paper, solid oxide fuel cells (SOFC) serving as
auxiliary power source is used to supply energy. The SOFC
dynamics model has been widely accepted widely is used
as the research model [18-19]. An improved data driven
model-free adaptive constrained control [18] has been used
to maintain the output voltage of SOFCVS at 333V. Boost
circuit applied for SOFC is used to provide energy to the
supercapacitor and keep its voltageVC at rated voltage when
the voltage of the supercapacitor drops without taking the
energy management strategy into consideration.

Nonlinear

Static Block

( )u k ( )x k Linear

Dynamic

Block

( )y k

Fig. 4. Hammerstein model.

In next section, denote theIth area control error byACEI ,
and define theIth power commandP ∗

CI of supercapacitor as
the control objectivey and control inputu, respectively.

III. HNN I DENTIFICATION FOR LFC OF THE ITH AREA

INTERCONNECTEDPOWER SYSTEM

Hammerstein model shown in Fig. 4 is a nonlinear system
consisted of a nonlinear static gain in cascade with a linear

dynamic block, which can approximate nonlinear function
effectively.

A. Hammerstein Model Formulation

If the nonlinear static block is assumed to be approached by
a finite polynomial expansion, the autoregressive Hammerstein
model for LFC of multi-area interconnected power system with
HESS can be expressed in the following form [36]:

α (z) y (k) = β (z)x (k) (8)

where










x (k) = γ1u (k) + γ2u
2 (k) + · · ·+ γnγ

unγ (k)

α (z) = 1 + α1z
−1 + α2z

−2 + · · ·+ αnα
z−nα

β (z) = β0 + β1z
−1 + β2z

−2 + · · ·+ βnβ
z
−nβ

(9)

where x (k) represents the intermediate variable,nγ deter-
mines the order of nonlinear static block,nα and nβ de-
termines the order of linear dynamic block of Hammerstein
model, andnβ ≤ nα. z−1 represents the unit delay oper-
ator. αi, (i = 1, 2, · · · , nα) and βj , (j = 1, 2, · · · , nβ) are
linear dynamic block parameters of Hammerstein model, and
γl, (l = 1, 2, · · · , nγ) are nonlinear static block parameters of
Hammerstein model.

The intermediate variablex (k) is non-measurable and has
no physical meaning, which can be eliminated by equations
(9). Substituting (9) into (8), the expression in operator form
is obtained as follows:

y (k) =
β (z)

α (z)

nγ
∑

l=1

γlu
l (k) (10)

B. Hammerstein-type Neural Network Identification

The structure of HNN is designed and shown in Fig. 5,
which is composed of a single dynamic node with two tapped
delay lines, and these delay lines form the nonlinear static
element and linear dynamic element.

Therefore, the output̂y (k) of HNN can be expressed as:

ŷ (k) = −α̂1ŷ (k − 1)− α̂2ŷ (k − 2)− · · · − α̂nα
ŷ (k − nα)

+ β̂0x̂ (k) + β̂1x̂ (k − 1) + · · ·+ β̂nβ
x̂ (k − nβ)

= −

nα
∑

i=1

α̂iŷ (k − i) +

nβ
∑

j=0

β̂j x̂ (k − j)

(11)
The hidden layer̂x (k) of HNN can be described as:

x̂ (k) =

nγ
∑

l=1

γ̂lu
l (k) (12)

where the parameterŝαi, (i = 1, 2, · · · , nα), β̂j, (j =
1, 2, · · · , nβ) andγ̂l(l = 1, 2, · · · , nγ) of HNN are associated
weights in (8) and (9), respectively. In this section, negative
gradient training method applied for adjusting the weightsof
HNN is executed to identify the Hammerstein model. The
identification error can be described as follows:

JH1
(k) =

1

2
(y (k)− ŷ (k))

2
=

1

2
ê2 (k) (13)
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where ê (k) = y (k) − ŷ (k), parameterH1 represents the
weights α̂i, (i = 1, 2, · · · , nα), β̂j , (j = 1, 2, · · · , nβ) and
γ̂l, (l = 1, 2, · · · , nγ). The error function (13) needs to be
achieved and minimized with respect to the parameterH1 of
the HNN by the BP training algorithm. The partial derivative
of (13) can be calculated as:

∂JH1
(k)

∂H1 (k)
= −ê (k)

∂ŷ (k)

∂H1 (k)
(14)

The general update rule of the point can be expressed as:

H1 (k + 1) = H1 (k) + ∆H1 (k) = H1 (k)− ηH
∂JH1

(k)

∂H1 (k)

= H1 (k) + ηH ê (k)
∂ŷ (k)

∂H1 (k)
(15)

WhereηH represents the training rate of the weights of HNN.
According to (11) and (12), the partial derivative ofŷ (k)

aboutα̂i, (i = 1, 2, · · · , nα), β̂j , (j = 1, 2, · · · , nβ), andx̂ (k)
can be calculated as follows:

∂ŷ (k)

∂α̂i

= −ŷ (k − i) ,
∂ŷ (k)

∂β̂j
= x̂ (k − j) (16)

∂ŷ (k)

∂x̂ (k)
= β̂0 (17)

Combining (11) and (12) with (17), the partial derivative of
ŷ (k) to γ̂l, (l = 1, 2, · · · , nγ) can be computed as following:

∂ŷ (k)

∂γ̂l
=
∂ŷ (k)

∂x̂ (k)

∂x̂ (k)

∂γ̂l
= β̂0u

l (k) (18)

From (15), (16) and (18), the update law of the weights
α̂i, (i = 1, 2, · · · , nα), β̂j, (j = 1, 2, · · · , nβ) and γ̂l, (l =
1, 2, · · · , nγ) of HNN can be described as:

α̂i (k + 1) = α̂i (k) + ηH ê (k)
∂ŷ (k)

∂α̂i

β̂j (k + 1) = β̂j (k) + ηH ê (k)
∂ŷ (k)

∂β̂j

γ̂l (k + 1) = γ̂l (k) + ηH ê (k)
∂ŷ (k)

∂γ̂l

(19)

Therefore, the output̂y (k) of HNN can be determined by
these update laws, and the weightsα̂i, (i = 1, 2, · · · , nα),

β̂j , (j = 1, 2, · · · , nβ) and γ̂l, (l = 1, 2, · · · , nγ) can be ad-
justed, simultaneously. Then, according to the analysis above,
the convergence criterion for selecting appropriate learning
rate is proposed as follows:

Theorem 1:If ηH is selected satifying

0 < ηH <
2

Φ2
H

(20)

whereΦH = maxk

∥

∥

∥

∂ŷ(k)
∂H1

∥

∥

∥
, then, the modeling error̂e (k)

is converged to the origin asymptotically by the update laws
(19).

Proof: Consider a candidate Lyapunov function

VH (k) =
1

2
ê2 (k) (21)

Then, according to (15), it follows that

∆H1 (k) == H1 (k + 1)−H1 (k) = ηH ê (k)
∂ŷ (k)

∂H1 (k)
(22)

From (20)-(22),∆VH (k) can be computed as:

∆VH (k) = VH (k + 1)− VH (k)

= ∆ê (k)

(

ê (k) +
∆ê (k)

2

)

= −ηH ê
2 (k)

∥

∥

∥

∥

∂ŷ (k)

∂H1 (k)

∥

∥

∥

∥

2

+
1

2
η2H ê

2 (k)

∥

∥

∥

∥

∂ŷ (k)

∂H1 (k)

∥

∥

∥

∥

4

≤ −
1

2
ηH ê

2 (k)
(

2− ηHΦ2
H

)

∥

∥

∥

∥

∂ŷ (k)

∂H1 (k)

∥

∥

∥

∥

2

(23)

From the fact thatVH (k) is positive definite,VH (k) > 0 for
all of k, ∆VH (k) is negative definite when theηH satisfies
(20). Therefore, it follows thatlim

k→∞

ê (k) = 0.

Generally, y (k) ≈ ŷ (k), since HNN is trained online.
Therefore, according to (12) and (17), Jacobian information
(system sensitivity) can be computed as:

∂y (k)

∂u (k)
≈
∂ŷ (k)

∂u (k)
=
∂ŷ (k)

∂x̂ (k)

∂x̂ (k)

∂u (k)

= β̂0

nγ
∑

l=1

l · γ̂lu
l−1 (k), l = 1, 2, · · · , nγ

(24)
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IV. A DAPTIVE PIDNN CONSTRAINED CONTROLLER

BASED ON HNN

In this section, the control objective is to adjust the param-
eters of the PIDNN controller to supply the appropriate power
reference signal to the HESS so that the outputy (k) of LFC
can track the desired reference signaly∗ (k). The signaly∗ (k)
is set as zero, which can adjust the frequency deviation∆fI
and the interchanged power of tie-line power∆PtieI to zero.
In addition, the weights of HNN is tuning online so that the
ŷ (k) can approach the system outputy (k) in real time, which
also provides the Jacobian information to parameters tuning of
the PIDNN controller. The whole control scheme for control
areaI, (I = 1, 2, 3, 4) is depicted in Fig. 6. In this picture, the
block labeled as “Hybrid energy storage system” represents
the model of HESS shown in Fig. 3 and the block labeled
as “Control area of power system” represents the simulation
model of theIth control area of the interconnected power
system depicted in Fig. 2 [3].

Firstly, the tracking error can be defined as:

e (k) = y∗ (k)− y (k)− ξ (k) (25)

where reference signaly∗ (k) is zero, ξ (k) represents a
compensation signal which is used to adjust the reference
setting value to maintain the control inputu (k) within the
saturation range, which is designed as:

ξ (k) = ρξ (k − 1) +
∂y (k)

∂u (k)
(un (k)− u (k)) (26)

whereρ < 1 is selected within the unit circle.
Since the rated capacity of converter of HESS is 1% of area

capacity, then theumax = 0.01p.u. andumin = −0.01p.u., so
the control signalu(k) can be defined as following:

u (k) = Sat (un (k)) =











umax, un ≥ umax

un, umin < un < umax

umin, un ≤ umin

(27)
whereumin andumax are the lower and upper bounds of the
Sat (·) function, respectively.

Using the identification result of HNN, the modified PIDNN
controller with the constraint in our paper is given as follows:

un (k) = u (k − 1) +

3
∑

j=1

kj (k)h (netj) (28)

wherekj (k), j = 1, 2, 3 represent the parameters of PIDNN
controller, and the output of first layernetj is given by:

netj =

3
∑

i=1

υijxci (k) (29)

whereυij , i = 1, 2, 3 andj = 1, 2, 3 are the weights of input
layer and hidden layer, respectively, and

xc1 = e(k)− e(k − 1), xc2 = e(k)

xc3 = e(k)− 2e(k − 1) + e(k − 2)

In (28), h (·) is the nonlinear function of hidden layer, which
is chosen as:

h (netj) =
1− exp−netj

1 + exp−netj
, j = 1, 2, 3 (30)

The derivative of (30) can be calculated as:

h
′

(netj) =
1

2
[1 + h (netj)]

2
, j = 1, 2, 3 (31)

Then, in order to get the updated law for adaptive PIDNN
controller, the error function is given as follows:

JH2
=

1

2
e2 (k) =

1

2
(y∗ (k)− y (k)− ξ (k))

2 (32)

According to (32), the gradient ofJH2
about the weightskj (k)

andυij (k) for i = 1, 2, 3 and j = 1, 2, 3 of the PIDNN can
be calculated as:

∂JH2
(k)

∂kj (k)
= −e (k)

∂y (k)

∂u (k)
h (netj)

∂JH2
(k)

∂υij (k)
= −e (k)

∂y (k)

∂u (k)
kj (k)h

′

(netj)xci (k)

(33)

Therefore, according to (33), the general update rule of the
weights in this point can be given as follows by use of the BP
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Fig. 7. System response of proposed controller compared with PID controller with HESS and the LFC without HESS for a load increment of 0.01 p.u.
followed by a load rejection of 0.015p.u.

training algorithm:

kj (k + 1) = kj (k)− ηc
∂JH2

(k)

∂kj (k)

υij (k + 1) = υij (k)− ηc
∂JH2

(k)

∂υij (k)

(34)

whereηc is the learning rate of the PIDNN controller.
From the general update rule (36) and (37) of the weights,

it follows that

∆H2 (k) = ηce(k)
∂e(k)

∂H2 (k)
≈ ηce(k)

∂y (k)

∂u (k)

∂un (k)

∂H2 (k)
(35)

whereH2 represents the weightskj (k) and υij (k) for i =
1, 2, 3 andj = 1, 2, 3 of PIDNN controller.

Similar to Theorem 1, the convergence criterion of PIDNN
controller is necessary to be analyzed, because of the require-
ment of convergence speed and stability of controller. So, the
criteria to choose an appropriate learning rateηc will be given
as follows.

Theorem 2:If the ηc is selected as

0 < ηc <
2

Φ2
c1Φ

2
c2

(36)

where Φc1 = maxk

∥

∥

∥

∂y(k)
∂u(k)

∥

∥

∥
, Φc2 = maxk

∥

∥

∥

∂uc(k)
∂H2(k)

∥

∥

∥
the

system errore (k) will converge to the origin asymptotically
by using the update laws (34).

Proof: Consider the candidate Lyapunov function

Vc (k) =
1

2
e2 (k) (37)

From (35)-(37)

∆Vc (k) = Vc (k + 1)− Vc (k)

= ∆e (k)

(

e (k) +
∆e (k)

2

)

=

(

∂e (k)

∂H2 (k)

)T

∆H2 (k)

[

e (k) +
1

2

(

∂e (k)

∂H2 (k)

)T

∆H2 (k)

]

≤ −
1

2
ηce

2 (k)
(

2− ηcΦ
2
c1Φ

2
c2

)

∥

∥

∥

∥

∂y (k)

∂u (k)

∥

∥

∥

∥

2∥
∥

∥

∥

∂un (k)

∂H2 (k)

∥

∥

∥

∥

2

Similar as the proof of Theorem 1, it is concluded that the
convergence of PIDNN can be guaranteed by use of (36).
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TABLE I
THE PARAMETERS OF FOUR-AREA INTERCONNECTED POWER SYSTEM

Area TG (s) TR (s) TT (s) R [Hz/(p.u.Mw)] TIJ (s) Kp [Hz/(p.u.Mw)] TP (s) c β [Hz/(p.u.Mw)] KAF

1 0.08 4.2 0.3 2.4 0.0707 120 20 0.35 0.425 1.1
2 0.072 4.2 0.33 2.7 0.0707 112.5 25 0.35 0.425 1.1
3 0.07 4.2 0.35 2.5 0.0707 125 20 .35 0.425 1.1
4 0.085 4.2 0.375 2 0.0707 115 15 0.35 0.425 1.1
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Fig. 8. Identification results of HNN and output of the PIDNN.

V. SIMULATION RESULTS

In this section, the proposed adaptive constrained PIDNN
controller based on HNN designed in Section IV is applied
to four-area interconnected power system to obtain that the
frequency deviation of each region returns to zero, and that
also interconnected power of tie-line keeps at desired value.
Meanwhile, it makes that the system of HESS satisfies the
operating constraints under the condition of load disturbance.

In the simulation, the parameters of four-area interconnected
power system are listed in Table. 1. The parameters of SOFC
and its control parameter are shown in [18]. The capacity of
the SOFC used in this paper is 200kW. The parameters of
supercapacitorC = 6F and filter inductorLf = 1mH in
HESS. The parameters of the PI controller in the DC/DC
converter arekp = 2 and ki = 1. The sampling time
is Ts = 0.001s and the orders of HNN are selected as
nα = 3, nβ = 3, nγ = 3. The learning rate of HNN for

four-area interconnected power system is chosen asηH1 =

[104, 104, 104]T , ηH2 =
[

1.2× 107, 1.2× 107, 1.2× 107
]T

and ηH4 = ηH3 =
[

4× 107, 4× 107, 4× 107
]T

. The open-
loop input-output data can achieve the initial values of HNN
for four-area interconnected power system.

For the proposed controller, the learning rate ofkj andυij
are selected asηc1 = [1, 1, 1]T and ηc2 = [0.1, 0.1, 0.1]T ,
respectively. The initial values of PIDNN are the same as the
parameters of traditional PID controller, which is chosen as
k1 (0) = 5, k2 (0) = 0.001 andk3 (0) = 0.05.

In the following case, the system is subjected to a load
increment of 0.01 p.u (750kW) followed by a load rejection
of 0.015p.u (1125kW). A higher load disturbance 0.015p.u.
(1125kW) is considered at time 50s, which is used to in-
crease uncertainty of multi-area interconnected power system.
The responses of the closed-loop system using the proposed
controller are shown in Fig. 7. Meanwhile, to highlight the
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Fig. 9. Identification parameters of HNN.

effectiveness of the designed control scheme, the adaptive
generalized predictive control (AGPC) proposed in [3], PID
controller with HESS and the LFC without HESS are used
to compare with the controller proposed in this paper. Fig.
8 shows the identification results of HNN and output of the
PIDNN. Fig. 9 shows the identification of parametersα̂i, β̂j
and γ̂l of HNN.

From the simulation results, it is clear to see that the control
effect of the frequency and tie-power deviations with HESS by
the proposed controller is better than that of the PID controller,
AGPC with HESS and the LFC without HESS. When load
disturbances occur in a region, the frequency and tie-power
deviations can be restored more quickly and smoothly by use
of the proposed controller. Meanwhile, the HESS can operate
within its constraints and reduce the power oscillations quickly
and effectively by the proposed controller. The HNN can
identify the system output effectively and the parameters of
HNN can be adaptively adjusted during the running of the
system.

VI. CONCLUSIONS

Two neural networks have been used to design an identifier
and controller in this paper. An adaptive PIDNN controller
based on HNN has been developed for an improved four-
area interconnected LFC with the HESS. In the proposed
control scheme, HNN is used as a forward identifier, which
provides dynamic Jacobian information of four-area intercon-
nected power system in real time to facilitate the design
of adaptive control of PIDNN controller. Then, the PIDNN
controller supplies the desired and appropriate power flow
reference for the HESS. In addition, considering the capacity
of HESS, a dynamic anti-windup signal is designed to solve
the operational constraints of HESS. The stability of the whole
system is analyzed by the Lyapunov theory. The simulation
results demonstrate the effectiveness of the proposed control
scheme, which tremendously reduces the frequency and tie-
power deviations when compared with the PID controller with
HESS and the LFC without HESS.
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