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Abstract 

The dynamic behavior of cylindrical shells with arbitrary boundaries is studied in this paper. 

Love’s shell theory and Hamilton’s principle are employed to derive the motion equations for 

cylindrical shells. A semi-analytical methodology, which incorporates Durbin’s inverse 

Laplace transform, differential quadrature method and Fourier series expansion technique, is 

proposed to investigate this phenomenon. The use of the differential quadrature method 

provides a solution in terms of the axial direction whereas the use of Durbin’s numerical 

inversion method generates a solution in the time domain. Comparison of calculated 

frequency parameters to that derived from the literature illustrates the effectiveness of the 

method. Specifically, convergence tests indicate that the present approach has a rapid 

convergence, the time-history response and the Navier’s solution are in great agreement. 

Comparisons between time-history responses derived by two shell theories show that the 

results fit well with each other when the thickness-radius ratios are small enough. An analysis 

of the influences of boundaries on the time-history response of cylindrical shells indicates that 

the peak displacement is closely related to the degrees of freedom of boundaries. The 

influences of the length-radius ratios and the thickness-radius ratios on the peak displacement 

are further investigated. 

Keywords: Time-history response; Frequency parameter; Differential quadrature method; 

Durbin’s inverse Laplace transform. 

1. Introduction 

As an important structural component, the cylindrical shells have been widely used in 

ship construction and marine engineering, such as autonomous underwater vehicles, 

deep-ocean submersibles, subsea pipelines and nuclear facilities for their transportation ability, 

convenient storage and good load capacity (Gupta et al., 2016; Wu et al., 2018; Zhang et al., 

2015a). These structures usually suffer from extreme loads including ocean currents, waves, 

and wind etc., resulting in vibration and damage of the structures (Zhang et al., 2015b). It is, 

therefore, necessary to exactly predict the vibration behavior of the cylindrical shells, as this 

knowledge can provide a theoretical foundation and scientific basis for structural design and 

performance optimization. 

 The extensive application of these structural elements has spurred rapid developments 

in shell theories and calculation methods for more accurate and efficient dynamic analysis of 
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the cylindrical shells. The existing shell theories can be divided into three categories: the 

classical shell theory (CST), the first-order shear deformation theory (FSDT) and higher-order 

shear deformation theory (HSDT) (Thai and Kim, 2015). It is noted that CST is effective only 

in calculating the natural frequency and time-history response of thin cylindrical shells, FSDT 

and HSDT are more accurate in analyzing the dynamic behaviors of cylindrical shells. More 

details about the development of this research can be found in Leissa (1993), Qatu (2004) and 

Reddy (2003). Although the FSDT and HSDT are more accurate and precise, it is effective to 

choose CST to simulate the thin cylindrical shells under the consideration of computational 

loads and accuracy requirements. 

Apart from the various shell theories, a variety of accurate and efficient calculation 

methods have been proposed one after another for vibration analysis of cylindrical shells, 

such as Rayleigh-Ritz method (Pradhan et al., 2000), Galerkin method (Haddadpour et al., 

2007), discrete singular convolution method (Civalek, 2006, 2013), wave propagation 

approach (Liu et al., 2018), the transfer matrix method (Liang and Chen, 2006), finite element 

method (Kadoli and Ganesan, 2006; Santos et al., 2009), the generalized integral transform 

technique (Gu et al., 2013), meshless method (Ferreira et al., 2011; Ferreira et al., 2006), a 

domain decomposition approach (Qu et al., 2013a; Qu et al., 2013b) and homotopy 

perturbation method (Yazdi, 2013) and so on. These methods mentioned above are proposed 

to derive the natural frequencies of shells and plates. However, the time-history response of 

cylindrical shells is rarely discussed in references. Reddy and Khdeir (1989) used the state 

space approach and the separation of variables technique to investigate the dynamic response 

of simply supported cross-ply laminated shallow shells under various loadings based on the 

third-order shear deformation shell theory. Lu and Lam (1995) combined the Rayleigh-Ritz 

method and the normal mode superposition method to evaluate the transient response of 

clamped laminated curved panels subjected to external loadings. Qing et al. (2008) presented 

the natural frequency, harmonic vibration and complex frequency response of simply 

supported laminated plates and shells with damping using the precise integration method and 

Muller method. Bodaghi and Shakeri (2012) developed an analytical approach to obtain the 

free vibration and dynamic response of the simply supported functionally graded 

piezo-electric cylindrical panel impacted by time-dependent blast pulses. Maleki et al. (2012) 

proposed a hybrid method to study the static and transient response of the moderately thick 

laminated cylindrical shell panels with various boundary conditions and loadings. Shao et al. 

(2017b) obtained the natural frequencies and transient response of cylindrical shells based on 

a simple first-order shear deformation shell theory using the method of reverberation ray 

matrix. Shao et al. (2017a) adopted an enhanced reverberation ray matrix approach to assess 

the transient response of composite laminated shallow shells with general boundary 

conditions based on the first-order shear deformation shallow shell theory and the classical 

shallow shell theory. Frikha et al. (2018) used a linear discrete double directors finite element 

model and Newmark’s algorithm to study the dynamic behavior of functionally graded carbon 

nanotubes-reinforced shells. Duc (2013) incorporated the Bubnov-Galerkin method and 

Runge-Kutta method to evaluate the nonlinear transient response of imperfect shallow shells. 

Hajmohammad et al. (2017) chose the differential quadrature method and Newmark approach 

to investigate the dynamic response of submerged cylindrical shells under seismic action. 

Zhang et al. (2017) estimated the transient response of CVT-reinforced cylindrical shells 
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subjected to impact loads by Fourier series expansion and Laplace transform. 

Although the above methods can analyze the dynamic behavior of the cylindrical shells, 

it is difficult for them to take account of the calculation accuracy, efficiency and algorithm 

stability at the same time. Considering the limitations of these methods, a more precise and 

accurate method is needed to calculate the time-history response of cylindrical shells under 

arbitrary boundaries. In the present work, Love’s shell theory and Hamilton’s principle are 

employed to obtain the motion equations and a semi-analytical method that incorporates the 

differential quadrature method, Durbin’s inverse Laplace transform is developed to predict the 

time-history response of cylindrical shells subjected to a harmonic load. This response is 

validated by comparing with the Navier’s solution. The frequency parameters of cylindrical 

shells are then calculated and the influences of boundaries, length-radius ratios, and 

thickness-radius ratios on the time-history response of cylindrical shells are evaluated. 

2. Laplace transform and differential quadrature method 

2.1 Laplace transform and its numerical inversion 

As an efficient and high precision computing method, the Laplace transform, which has 

been extensively used for solving partial differential equations, is expressed as follows: 

    
0

sth s h t e dt


    (1) 

in which ~ denotes the transformed function and s is a complex number. 

Durbin developed a novel numerical inverse Laplace transform, which can give exact 

values of original functions in the interval (0, T/2), defined as (Durbin, 1974): 
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   (2) 

in which λ = 5/T, i is the imaginary unit in complex number and K denotes a large integer. 

2.2 Differential quadrature method 

The principle of differential quadrature method is that the weighted sum of functional 

values of all grid points is used to represent a function and its derivatives at a chosen point, 

and it is defined as below (Liang et al., 2014): 
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in which N denotes the number of grid points, and C
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mn refer to the weighting coefficients 

defined by: 
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in which n ≠ m, and the C
(i) 

mm are given as: 
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       (6) 

3. Problem description 

3.1 Governing equations 

A thin cylindrical shell as shown in Fig. 1 is considered, the symbols l, R, h denote the 

length, radius, and thickness of the cylindrical shell. The origin of the cylindrical coordinate 

system is fixed at the mid-surface of the cylindrical shells. 

 

Fig. 1. Geometry of the thin cylindrical shell subjected to a harmonic load. 

For thin shells, the following assumptions are considered: the shear deformation and 

rotary inertia are ignored, and the normal line of the mid-surface remains straight and normals 

to the mid-surface during deformation. The displacement-strain relationships based on Love’s 

shell theory are expressed as: 
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ε ε κ   (7) 

in which ε0 is the strain vector and κ refers to the vector of curvature changes, u0, v0, w0 

denote displacement components on the mid-surface in x-, θ- and z- directions, respectively; 

The stress-strain relationships are given as: 

 σ Qε   (8) 

in which σ is the stress vector, and Q is the elastic constants matrix defined as: 

  
11 12

12 22
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σ Q   (9) 

For isotropic materials, the elastic constants Qij (i,j=1,2 and 6) can be stated as: 
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  (10) 

in which E is Young’s modulus, and μ is Poisson’s ratio. 
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The Hamilton’s principle is employed to obtain motion equations for thin cylindrical 

shells, and it is defined as: 

  
0

0
t

ncJ K V W dt         (11) 

in which K, and V refer to the kinetic energy and strain energy, Wnc denotes the work done by 

external loads. 

The kinetic energy without considering the rotary inertia terms can be written as follows: 
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       (12) 

in which the superscript “·” represents the variables with respect to time. 

The strain energy is expressed as: 

  
2 /2

0 0 /2

1

2

l h

x x x x
h

V Rdxd dz


         


       (13) 

The work done by external loads is defined by: 

  
2

0 0 0
0 0

l

nc x zW f u f v f w Rdxd


          (14) 

in which fx, fθ and fz stand for external loads in x-, θ- and z- directions, respectively, and it is 

noteworthy that fx = 0, fθ = 0, fz = 3000cos(300t)δ(θ). 

Substituting Eqs. (12)-(14) into Eq. (11), the motion equations for thin cylindrical shells 

in terms of stress resultants are given as: 
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in which 
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    (18) 

By substituting Eqs. (7)-(10) into Eq. (15), the motion equations in terms of the  

displacement components (u0, v0, w0) can be written as: 
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in which 
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3.2 The boundary conditions at the edges 

The boundaries of the elastically restrained shell are described by setting the values of 

translational springs and rotational spring, and the boundaries of cylindrical shells can be 

stated as follows (Jin et al., 2015; Jin et al., 2013): 

At left edge (x=0): 
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At right edge (x=l): 
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  (22) 

in which ku, kv, and kw denote the translational spring stiffness coefficients, Kw is the rotational 

spring stiffness. 

The stiffness coefficients of springs corresponding to four boundaries are defined as: 

Free edge (F): 

 0u v w wk k k K      (23) 

Simply-supported edge (S): 

 
1410 ,   0.u v w wk k k K      (24) 
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Shear-diaphragm edge (SD): 

 
140,   10 .u w v wk K k k      (25) 

Clamped edge (C): 

 
1410 .u v w wk k k K      (26) 

4. Solution process 

4.1 Natural frequency solution 

The modal frequencies of cylindrical shells are calculated, and the displacement 

components of cylindrical shells for modal analysis are expanded as: 

 

     

     

     

0

0

0

, , cos ,

, , sin ,

, , cos .

i t

i t

i t

u x t U x k e

v x t V x k e

w x t W x k e







 

 

 

 



 

  (27) 

in which k and ω denote the circumferential wavenumber and natural frequency of the cylindrical 

shell, respectively. 

By substituting Eq. (27) into the motion equations without considering external forces, 

and then employing the DQM on the resulting equations, the following formulas can be 

obtained: 
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Substituting boundaries into Eq. (28), the obtained equations are rewritten into matrix form 

as: 
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After eliminating the vector ub, the resulting equations can be described as: 

  2  dM K u 0   (30) 

in which M denotes the mass matrix, K is stiffness matrix, and ud refer to a vector. The 

eigenvalues of the following matrix are the natural frequencies, and the eigenvalue matrix is 

given as: 
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4.2 Transient response solution 

The trigonometric series are taken to expand the displacement components and external 

loads on the mid-surface of the cylindrical shells in the circumferential direction, and the 

detailed expansion forms of displacement components and external loads are presented as: 
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  (32) 

Substituting Eq. (32) into Eq. (19) and the motion equations processed by Laplace transform 

are expressed as: 
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Employing the DQM on Eq. (33) and the following equations can be given: 
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The matrix form of Eq. (34) can be stated as: 

 H U F   (35) 

in which 
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The expressions of matrix H are detailed in Appendix A. 

The general boundaries of the elastically restrained shells processed by the trigonometric 

series expansion and Laplace transform can be stated as (x=0): 
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  (38) 

By substituting Eq. (37) into Eq. (35), and the elements corresponding to boundaries in 

matrices Hij are available in Appendix B. 

After finding the solution of Eq. (35), the time-history responses of cylindrical shells are 

obtained by using the Durbin’s inverse Laplace transform. 

5. Numerical results 

A Mathematica package was developed to present the numerical results in this paper, and 

the following steps are taken to evaluate the model. Firstly, the frequency parameters of thin 

cylindrical shells are calculated. Subsequently, the convergence of results for different 

numbers of grid points (N) in the axial direction and the validity of the present method is 

estimated. Thirdly, the time-history responses derived by classical shell theory and first-order 

shear deformation theory are compared. Fourthly, the influences of various boundaries on 

cylindrical shell displacement are investigated. Lastly, the influences of length-radius ratios 

(l/R) and thickness-radius ratios (h/R) on time-history response are assessed. Considering a set 
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of model parameters used in following numerical calculation, the system parameters used in 

the present work are given as follows: 

E=70GPa, μ=0.3, ρ=2707kg/m
3
, l=2m, R=0.5m, h=0.002m. 

In order to guarantee the convergence and accuracy of the results, the 

Chebyshev-Gauss-Lobatto grid points are used in present work and are defined as: 

 
1

1 cos ,   1,2, ,...
2 1

l
x N

N



 

   
    

  
  (39) 

in which N denotes the number of grid points in the axial direction, and it is taken as 11 in the 

following numerical examples. 

5.1 Natural frequencies 

To prove the correctness of the present method for the modal analysis of thin cylindrical 

shells, a series of calculated results will be compared with the frequency parameters from the 

literature. The length-radius ratio l/R=20 and Poisson’s ratio μ=0.3 are adopted in the 

following calculations. Table 1 presents the frequency parameters of cylindrical shells under 

three different boundaries, m and k refer to the axial and circumferential wavenumbers, 

respectively. It can be found from Table 1 that the frequency parameters produced by the 

differential quadrature method are consistent with the results obtained by Loy et al. (1997). 

Table 2 shows the frequency parameters of a SD-SD cylindrical shell under different 

thickness-radius ratios. As shown in Table 2, the frequency parameters generated by the 

proposed method fits well with the results calculated by Markuš (1988) and Loy et al. (1997). 

The frequency parameters of a different cylindrical shell with C-SD boundary are again 

compared in Table 3, which also shows a good agreement between the results produced by the 

present method and results from the literature. 

Table 1 Frequency parameters of a thin cylindrical shell with three different boundaries 

(h/R=0.01). 

k 

Frequency parameters  21R E       

SD-SD C-C C-SD 

Loy et al. 

(1997) 

Present 
Loy et al. 

(1997) 

Present 
Loy et al. 

(1997) 

Present 

1 0.016101 0.016101 0.032885 0.032884 0.023974 0.023976 

2 0.009382 0.009378 0.013923 0.013929 0.011225 0.011221 

3 0.022105 0.022103 0.022672 0.022668 0.022310 0.022308 

4 0.042095 0.042094 0.042208 0.042207 0.042139 0.042137 

5 0.068008 0.068007 0.068046 0.068045 0.068024 0.068023 

6 0.099730 0.099729 0.099748 0.099747 0.099738 0.099737 

7 0.137239 0.137238 0.137249 0.137249 0.137244 0.137243 

8 0.180527 0.180527 0.180535 0.180534 0.180531 0.180531 

9 0.229594 0.229593 0.229599 0.229598 0.229596 0.229596 

10 0.284435 0.284435 0.284439 0.284439 0.284437 0.284437 

Table 2 Frequency parameters of SD-SD cylindrical shells. 
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 Frequency parameters  21R E      

k 

h/R=0.05 h/R=0.002 

Markuš 

(1988) 

Loy et al. 

(1997) 
Present 

Markuš 

(1988) 

Loy et al. 

(1997) 
Present 

1 0.0161063 0.01610 0.0161029 0.0161011 0.016101 0.0161011 

2 0.0392332 0.03930 0.0392710 0.00545243 0.005453 0.00545297 

3 0.109477 0.109824 0.1098116 0.00503724 0.005042 0.00504148 

4 0.209008 0.210284 0.2102773 0.00853409 0.008534 0.00853382 

Table 3 Frequency parameters of C-SD cylindrical shells (h/R=0.002). 

Frequency parameters  21R E      

k 

Lam and 

Loy 

(1995) 

Loy et al. 

(1997) 
Present k 

Lam and 

Loy 

(1995) 

Loy et al. 

(1997) 
Present 

1 0.024830 0.023974 0.023976 6 0.019974 0.019973 0.019972 

2 0.008410 0.008223 0.008222 7 0.027461 0.027460 0.027460 

3 0.005897 0.005842 0.005842 8 0.036113 0.36112 0.036112 

4 0.008717 0.008705 0.008705 9 0.045924 0.045923 0.045923 

5 0.013682 0.013679 0.013679 10 0.056891 0.056890 0.056890 

 
(a) different boundaries 
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(b) different thickness-radius ratios h/R 

 

(c) different length-radius ratios l/R 

Fig. 2. Variations of frequency parameters versus circumferential wavenumber k: (a) different 

boundaries; (b) different thickness-radius ratios h/R.; (c) different length-radius ratios l/R. 

Frequency parameters of a cylindrical shell with different boundaries, thickness-radius 

ratios, and length-radius ratios are plotted in Fig. 2. Circumferential wavenumbers ranging 

from 1 to 10 are considered here. As is shown this figure, with the increase of the 

circumferential wavenumber k, the general variation trend of frequency parameters decreases 

first and then increase. Frequency parameters for different boundaries coincide with each 

other when the circumferential wavenumber k≥3, and this indicates that the boundary type has 

a significant influence on frequency parameters corresponding to low circumferential 

wavenumbers. Furthermore, the frequency parameters increase with the increase of the 

thickness-radius ratios or decrease with the increase of the length-radius ratios. As can be seen 

from this figure, the effects of the thickness-radius ratios on the frequency parameters are 

mainly reflected in the case that the circumferential wavenumber k≥2, while the effects of the 

length-radius ratios on the frequency parameters are mainly reflected in the case that the 
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circumferential wavenumber k≤3. 

5.2 Convergence and validation 

To demonstrate the superiority of the developed approach used in this paper, the 

convergence of the developed approach is investigated with different number N of grid points 

along the axial direction. A series of grid points, N = 5, 7, 9, 11 and 13, is used for this. Fig. 3 

shows the influences of grid points on the time-history response of a cylindrical shell at a 

chosen position (x=l/2, θ=0, z=0) and displacements of each point on the x-axis at a time 

when t=0.26s. It is evident that the results tend to be stable and consistent when the number of 

grid points is higher than 7, which suggests that the convergence rate of the developed 

approach used in the present work is fast. Moreover, in order to illustrate the merit of the 

proposed method in improving computation speed, the time required to use the developed 

method for calculating the dynamic response of the cylindrical shell is compared with the 

time required to adopt the Navier method. As is shown in Table 4, the time required to use the 

proposed method for calculating the dynamic response of the cylindrical shell is much less 

than the time required to the Navier method, and it indicates that the developed method is 

much more efficient than the Navier method in obtaining the dynamic response of the 

cylindrical shell. 

Table 4 The time required to use different methods for calculating dynamic responses of the 

cylindrical shell. 

Methods 1
st
 2

nd
 3

rd
 Average time (s) 

NGP (The 

present 

method) 

5 249.876 249.929 248.837 249.547 

7 369.504 372.406 370.019 370.718 

9 665.313 662.661 668.121 665.365 

The Navier method 1096.38 1089.37 1092.16 1092.64 

* NDP: the number of grid points 

To prove the effectiveness of the present method, response results of cylindrical shells 

with SD-SD boundary are also compared with Navier’s solution. The displacement 

components of a cylindrical shell with SD-SD boundary at the ends in terms of the Navier 

method can be expanded as follows: 
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  (40) 

where umn(t), vmn(t) and wmn(t) represent generalized coordinates, m and n denote the axial half 

wavenumber and circumferential wavenumber, respectively. 

The results of the time-history response of the cylindrical shell with SD-SD boundary at 

a chosen position (x=l/2, θ=0, z=0) obtained by the two methods are compared in Fig. 4. As 

shown in this figure, the result derived from the semi-analytical method is in great agreement 
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with the Navier’s solution. 

 

 

Fig. 3. The time-history curves of a SD-SD cylindrical shell at a chosen position (x=l/2, θ=0, 

z=0) under different grid points and displacement of all grid points at a time when t=0.26s. 

 

Fig. 4. The time-history curves of a SD-SD cylindrical shell at a chosen position (x=l/2, θ=0, 

z=0) using the Navier method and the present method. 
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5.3 Comparison of different shell theories 

The influences of shell theories on the time-history responses of the cylindrical shell are 

analyzed. The results obtained by classical shell theory (CST) and first-order shear 

deformation theory (FSDT) with different boundaries and thickness-radius ratios are 

compared. Two sets of thickness-radius ratios (h/R=1/500, 1/1000) are used to present the 

time-history responses of cylindrical shells with SD-SD and C-C boundaries. As shown in Fig. 

5, the results obtained by CST and FSDT under two sets of thickness-radius ratios are in good 

agreement,  indicating that CST without considering shear deformation and rotary inertia is 

valid and accurate in calculating time-history responses of the cylindrical shell when the 

thickness-radius ratios are small enough. 

 

 

Fig. 5. The time-history curves of the cylindrical shell at a chosen position (x=l/2, θ=0, z=0) 

under SD-SD and C-C boundaries. 

5.4 The influences of boundaries at the edges 

The influences of boundaries at the edges on the time-history response of the cylindrical 

shell are studied. Four kinds of boundaries at the edges are considered: Simply 

diaphragm-Simply diaphragm boundaries (SD-SD), Clamped-Clamped boundaries (C-C), 

Clamped-Simply diaphragm boundaries (C-SD) and Clamped-Free boundaries (C-F). The 

time-history responses of cylindrical shells under various boundaries at a chosen position 
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(x=l/2, θ=0, z=0) is plotted in Fig. 6. It is evident that the peak displacement is maximum 

when the boundary is C-F, and minimum peak displacement of the cylindrical shell appears 

when the boundary is C-C, and the results indicate that the peak displacement is closely 

related to the number of edge degrees of freedom. 

 

 

Fig. 6. The time-history curves of a cylindrical shell at a chosen position (x=l/2, θ=0, z=0) 

under different boundaries and displacement of all grid points on the x-axis at a time when 

t=0.26s. 

5.5 The influences of geometric dimensioning 

The influences of geometric dimensioning including length-radius ratio l/R and 

thickness-radius ratio h/R are evaluated. Two sets of geometric dimensioning are used, the 

first series is: l/R=1, 2, 3, 4, 5 with h/R=1/250; the second series is: h/R=1/50, 1/100, 1/150, 

1/200, 1/250 with l/R=4. The time-history responses of the cylindrical shell for a given 

length-radius ratio and thickness-radius ratio at a chosen position (x=l/2, θ=0, z=0) are given 

in Fig. 7. It is found that the peak displacement increases as length-radius ratio increases. On 

the contrary, for a fixed length-radius ratio, the peak displacement increases with a decrease in 

thickness-radius ratio. 
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Fig. 7. The time-history responses of a cylindrical shell at a chosen position (x=l/2, θ=0, z=0) 

under different length-radius ratios and thickness-radius ratios. 

6. Conclusions 

In the present work, a novel semi-analytical methodology, which includes the differential 

quadrature method, the Fourier series expansion technique, and Durbin’s numerical inversion 

method, is proposed to derive the time-history responses of a cylindrical shell under various 

boundaries. 

The frequency parameters of the thin cylindrical shells are calculated and a series of 

results obtained are compared with the data from the literature. This shows that the results 

obtained by the semi-analytical approach are consistent with the results in the literature. To 

demonstrate the convergence and the validity of the results obtained, varying numbers of grid 

points along the axial direction are used and a comparison of results with the Navier’s 

solution is carried out. The results indicate that the approach used in this paper is of fast 

rapidity of convergence and high accuracy. A comparison of time-history responses derived 

by classical shell theory with results obtained by first-order shear deformation theory shows 

that the classical shell theory is accurate and precise in estimating the time-history responses 

of cylindrical shells when the thickness-radius ratio is small enough. The analysis of various 
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boundaries on the time-history response of cylindrical shells shows that the peak 

displacement of cylindrical shells has a close relationship with the number of edge degrees of 

freedom. The influences of length-radius ratios and thickness-radius ratios on the time-history 

responses of cylindrical shells are also analyzed. Parametric studies show that the peak 

displacement becomes larger as the length-radius ratio increases or the thickness-radius ratio 

decreases. 
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Table 1 Frequency parameters of a thin cylindrical shell with three different boundaries 

(h/R=0.01). 

k 

Frequency parameters  21R E       

SD-SD C-C C-SD 

Loy et al. 

(1997) 

Present 
Loy et al. 

(1997) 

Present 
Loy et al. 

(1997) 

Present 

1 0.016101 0.016101 0.032885 0.032884 0.023974 0.023976 

2 0.009382 0.009378 0.013923 0.013929 0.011225 0.011221 

3 0.022105 0.022103 0.022672 0.022668 0.022310 0.022308 

4 0.042095 0.042094 0.042208 0.042207 0.042139 0.042137 

5 0.068008 0.068007 0.068046 0.068045 0.068024 0.068023 

6 0.099730 0.099729 0.099748 0.099747 0.099738 0.099737 

7 0.137239 0.137238 0.137249 0.137249 0.137244 0.137243 

8 0.180527 0.180527 0.180535 0.180534 0.180531 0.180531 

9 0.229594 0.229593 0.229599 0.229598 0.229596 0.229596 

10 0.284435 0.284435 0.284439 0.284439 0.284437 0.284437 
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Table 2 Frequency parameters of SD-SD cylindrical shells. 

 Frequency parameters  21R E      

k 

h/R=0.05 h/R=0.002 

Markuš 

(1988) 

Loy et al. 

(1997) 
Present 

Markuš 

(1988) 

Loy et al. 

(1997) 
Present 

1 0.0161063 0.01610 0.0161029 0.0161011 0.016101 0.0161011 

2 0.0392332 0.03930 0.0392710 0.00545243 0.005453 0.00545297 

3 0.109477 0.109824 0.1098116 0.00503724 0.005042 0.00504148 

4 0.209008 0.210284 0.2102773 0.00853409 0.008534 0.00853382 
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Table 3 Frequency parameters of C-SD cylindrical shells (h/R=0.002). 

Frequency parameters  21R E      

k 

Lam and 

Loy 

(1995) 

Loy et al. 

(1997) 
Present k 

Lam and 

Loy 

(1995) 

Loy et al. 

(1997) 
Present 

1 0.024830 0.023974 0.023976 6 0.019974 0.019973 0.019972 

2 0.008410 0.008223 0.008222 7 0.027461 0.027460 0.027460 

3 0.005897 0.005842 0.005842 8 0.036113 0.36112 0.036112 

4 0.008717 0.008705 0.008705 9 0.045924 0.045923 0.045923 

5 0.013682 0.013679 0.013679 10 0.056891 0.056890 0.056890 
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Table 4 The time required to use different methods for calculating dynamic responses of the 

cylindrical shell. 

Methods 1
st
 2

nd
 3

rd
 Average time (s) 

NGP (The 

present 

method) 

5 249.876 249.929 248.837 249.547 

7 369.504 372.406 370.019 370.718 

9 665.313 662.661 668.121 665.365 

The Navier method 1096.38 1089.37 1092.16 1092.64 

* NDP: the number of grid points 
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Fig. 1. Geometry of the thin cylindrical shell subjected to a harmonic load. 
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(a) different boundaries 

 

(b) different thickness-radius ratios h/R 

 

(c) different length-radius ratios l/R 

Fig. 2. Variations of frequency parameters versus circumferential wavenumber k: (a) different 

boundaries; (b) different thickness-radius ratios h/R.; (c) different length-radius ratios l/R.  
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Fig. 3. The time-history curves of a SD-SD cylindrical shell at a chosen position (x=l/2, θ=0, 

z=0) under different grid points and displacement of all grid points at a time when t=0.26s. 
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Fig. 4. The time-history curves of a SD-SD cylindrical shell at a chosen position (x=l/2, θ=0, 

z=0) using the Navier method and the present method. 
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Fig. 5. The time-history curves of the cylindrical shell at a chosen position (x=l/2, θ=0, z=0) 

under SD-SD and C-C boundaries. 
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Fig. 6. The time-history curves of a cylindrical shell at a chosen position (x=l/2, θ=0, z=0) 

under different boundaries and displacement of all grid points on the x-axis at a time when 

t=0.26s. 
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Fig. 7. The time-history responses of a cylindrical shell at a chosen position (x=l/2, θ=0, z=0) 

under different length-radius ratios and thickness-radius ratios. 
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Abstract 

The dynamic behavior of cylindrical shells with arbitrary boundaries is studied in this paper. 

Love’s shell theory and Hamilton’s principle are employed to derive the motion equations for 

cylindrical shells. A semi-analytical methodology, which incorporates Durbin’s inverse 

Laplace transform, differential quadrature method and Fourier series expansion technique, is 

proposed to investigate this phenomenon. The use of the differential quadrature method 

provides a solution in terms of the axial direction whereas the use of Durbin’s numerical 

inversion method generates a solution in the time domain. Comparison of calculated 

frequency parameters to that derived from the literature illustrates the effectiveness of the 

method. Specifically, convergence tests indicate that the present approach has a rapid 

convergence, the time-history response and the Navier’s solution are in great agreement. 

Comparisons between time-history responses derived by two shell theories show that the 

results fit well with each other when the thickness-radius ratios are small enough. An analysis 

of the influences of boundaries on the time-history response of cylindrical shells indicates that 

the peak displacement is closely related to the degrees of freedom of boundaries. The 

influences of the length-radius ratios and the thickness-radius ratios on the peak displacement 

are further investigated. 

Keywords: Time-history response; Frequency parameter; Differential quadrature method; 

Durbin’s inverse Laplace transform. 

1. Introduction 

As an important structural component, the cylindrical shells have been widely used in 

ship construction and marine engineering, such as autonomous underwater vehicles, 

deep-ocean submersibles, subsea pipelines and nuclear facilities for their transportation ability, 

convenient storage and good load capacity (Gupta et al., 2016; Wu et al., 2018; Zhang et al., 

2015a). These structures usually suffer from extreme loads including ocean currents, waves, 

and wind etc., resulting in vibration and damage of the structures (Zhang et al., 2015b). It is, 

therefore, necessary to exactly predict the vibration behavior of the cylindrical shells, as this 

knowledge can provide a theoretical foundation and scientific basis for structural design and 

performance optimization. 

 The extensive application of these structural elements has spurred rapid developments 

in shell theories and calculation methods for more accurate and efficient dynamic analysis of 

REVISED Manuscript MARKED
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the cylindrical shells. The existing shell theories can be divided into three categories: the 

classical shell theory (CST), the first-order shear deformation theory (FSDT) and higher-order 

shear deformation theory (HSDT) (Thai and Kim, 2015). It is noted that CST is effective only 

in calculating the natural frequency and time-history response of thin cylindrical shells, FSDT 

and HSDT are more accurate in analyzing the dynamic behaviors of cylindrical shells. More 

details about the development of this research can be found in Leissa (1993), Qatu (2004) and 

Reddy (2003). Although the FSDT and HSDT are more accurate and precise, it is effective to 

choose CST to simulate the thin cylindrical shells under the consideration of computational 

loads and accuracy requirements. 

Apart from the various shell theories, a variety of accurate and efficient calculation 

methods have been proposed one after another for vibration analysis of cylindrical shells, 

such as Rayleigh-Ritz method (Pradhan et al., 2000), Galerkin method (Haddadpour et al., 

2007), discrete singular convolution method (Civalek, 2006, 2013), wave propagation 

approach (Liu et al., 2018), the transfer matrix method (Liang and Chen, 2006), finite element 

method (Kadoli and Ganesan, 2006; Santos et al., 2009), the generalized integral transform 

technique (Gu et al., 2013), meshless method (Ferreira et al., 2011; Ferreira et al., 2006), a 

domain decomposition approach (Qu et al., 2013a; Qu et al., 2013b) and homotopy 

perturbation method (Yazdi, 2013) and so on. These methods mentioned above are proposed 

to derive the natural frequencies of shells and plates. However, the time-history response of 

cylindrical shells is rarely discussed in references. Reddy and Khdeir (1989) used the state 

space approach and the separation of variables technique to investigate the dynamic response 

of simply supported cross-ply laminated shallow shells under various loadings based on the 

third-order shear deformation shell theory. Lu and Lam (1995) combined the Rayleigh-Ritz 

method and the normal mode superposition method to evaluate the transient response of 

clamped laminated curved panels subjected to external loadings. Qing et al. (2008) presented 

the natural frequency, harmonic vibration and complex frequency response of simply 

supported laminated plates and shells with damping using the precise integration method and 

Muller method. Bodaghi and Shakeri (2012) developed an analytical approach to obtain the 

free vibration and dynamic response of the simply supported functionally graded 

piezo-electric cylindrical panel impacted by time-dependent blast pulses. Maleki et al. (2012) 

proposed a hybrid method to study the static and transient response of the moderately thick 

laminated cylindrical shell panels with various boundary conditions and loadings. Shao et al. 

(2017b) obtained the natural frequencies and transient response of cylindrical shells based on 

a simple first-order shear deformation shell theory using the method of reverberation ray 

matrix. Shao et al. (2017a) adopted an enhanced reverberation ray matrix approach to assess 

the transient response of composite laminated shallow shells with general boundary 

conditions based on the first-order shear deformation shallow shell theory and the classical 

shallow shell theory. Frikha et al. (2018) used a linear discrete double directors finite element 

model and Newmark’s algorithm to study the dynamic behavior of functionally graded carbon 

nanotubes-reinforced shells. Duc (2013) incorporated the Bubnov-Galerkin method and 

Runge-Kutta method to evaluate the nonlinear transient response of imperfect shallow shells. 

Hajmohammad et al. (2017) chose the differential quadrature method and Newmark approach 

to investigate the dynamic response of submerged cylindrical shells under seismic action. 

Zhang et al. (2017) estimated the transient response of CVT-reinforced cylindrical shells 
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subjected to impact loads by Fourier series expansion and Laplace transform. 

Although the above methods can analyze the dynamic behavior of the cylindrical shells, 

it is difficult for them to take account of the calculation accuracy, efficiency and algorithm 

stability at the same time. Considering the limitations of these methods, a more precise and 

accurate method is needed to calculate the time-history response of cylindrical shells under 

arbitrary boundaries. In the present work, Love’s shell theory and Hamilton’s principle are 

employed to obtain the motion equations and a semi-analytical method that incorporates the 

differential quadrature method, Durbin’s inverse Laplace transform is developed to predict the 

time-history response of cylindrical shells subjected to a harmonic load. This response is 

validated by comparing with the Navier’s solution. The frequency parameters of cylindrical 

shells are then calculated and the influences of boundaries, length-radius ratios, and 

thickness-radius ratios on the time-history response of cylindrical shells are evaluated. 

2. Laplace transform and differential quadrature method 

2.1 Laplace transform and its numerical inversion 

As an efficient and high precision computing method, the Laplace transform, which has 

been extensively used for solving partial differential equations, is expressed as follows: 

    
0

sth s h t e dt


    (1) 

in which ~ denotes the transformed function and s is a complex number. 

Durbin developed a novel numerical inverse Laplace transform, which can give exact 

values of original functions in the interval (0, T/2), defined as (Durbin, 1974): 

        
1

2
2 Re cos

t K

k

e
h t h h k i T k t T

T



   


 
     

 
   (2) 

in which λ = 5/T, i is the imaginary unit in complex number and K denotes a large integer. 

2.2 Differential quadrature method 

The principle of differential quadrature method is that the weighted sum of functional 

values of all grid points is used to represent a function and its derivatives at a chosen point, 

and it is defined as below (Liang et al., 2014): 
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in which N denotes the number of grid points, and C
(i) 

mn refer to the weighting coefficients 

defined by: 

 
 

 

   

1 1,

1,

N

m r
r r n

mn N

m n n r
r r n

x x

C

x x x x

 

 





 




  (4) 

 
   

 

 
1

1 1 2,3,... 1 

i
i i mn

mn mn mn

m n

C
C i C C

x
i N

x




 
   

 


  (5) 

in which n ≠ m, and the C
(i) 

mm are given as: 
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       (6) 

3. Problem description 

3.1 Governing equations 

A thin cylindrical shell as shown in Fig. 1 is considered, the symbols l, R, h denote the 

length, radius, and thickness of the cylindrical shell. The origin of the cylindrical coordinate 

system is fixed at the mid-surface of the cylindrical shells. 

 

Fig. 1. Geometry of the thin cylindrical shell subjected to a harmonic load. 

For thin shells, the following assumptions are considered: the shear deformation and 

rotary inertia are ignored, and the normal line of the mid-surface remains straight and normals 

to the mid-surface during deformation. The displacement-strain relationships based on Love’s 

shell theory are expressed as: 
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ε ε κ   (7) 

in which ε0 is the strain vector and κ refers to the vector of curvature changes, u0, v0, w0 

denote displacement components on the mid-surface in x-, θ- and z- directions, respectively; 

The stress-strain relationships are given as: 

 σ Qε   (8) 

in which σ is the stress vector, and Q is the elastic constants matrix defined as: 

  
11 12

12 22

66
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x x
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σ Q   (9) 

For isotropic materials, the elastic constants Qij (i,j=1,2 and 6) can be stated as: 

 
 11 22 12 662 2

, , .
1 1 2 1

E E E
Q Q Q Q



  
   

  
  (10) 

in which E is Young’s modulus, and μ is Poisson’s ratio. 
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The Hamilton’s principle is employed to obtain motion equations for thin cylindrical 

shells, and it is defined as: 

  
0

0
t

ncJ K V W dt         (11) 

in which K, and V refer to the kinetic energy and strain energy, Wnc denotes the work done by 

external loads. 

The kinetic energy without considering the rotary inertia terms can be written as follows: 

  
2 /2

2 2 2

0 0 0
0 0 /2

1

2

l h

h
K u v w Rdxd dz



 


       (12) 

in which the superscript “·” represents the variables with respect to time. 

The strain energy is expressed as: 
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       (13) 

The work done by external loads is defined by: 

  
2

0 0 0
0 0

l

nc x zW f u f v f w Rdxd


          (14) 

in which fx, fθ and fz stand for external loads in x-, θ- and z- directions, respectively, and it is 

noteworthy that fx = 0, fθ = 0, fz = 3000cos(300t)δ(θ). 

Substituting Eqs. (12)-(14) into Eq. (11), the motion equations for thin cylindrical shells 

in terms of stress resultants are given as: 
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in which 
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h

h
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    (18) 

By substituting Eqs. (7)-(10) into Eq. (15), the motion equations in terms of the  

displacement components (u0, v0, w0) can be written as: 
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in which 
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3.2 The boundary conditions at the edges 

The boundaries of the elastically restrained shell are described by setting the values of 

translational springs and rotational spring, and the boundaries of cylindrical shells can be 

stated as follows (Jin et al., 2015; Jin et al., 2013): 

At left edge (x=0): 
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At right edge (x=l): 
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  (22) 

in which ku, kv, and kw denote the translational spring stiffness coefficients, Kw is the rotational 

spring stiffness. 

The stiffness coefficients of springs corresponding to four boundaries are defined as: 

Free edge (F): 

 0u v w wk k k K      (23) 

Simply-supported edge (S): 

 
1410 ,   0.u v w wk k k K      (24) 
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Shear-diaphragm edge (SD): 

 
140,   10 .u w v wk K k k      (25) 

Clamped edge (C): 

 
1410 .u v w wk k k K      (26) 

4. Solution process 

4.1 Natural frequency solution 

The modal frequencies of cylindrical shells are calculated, and the displacement 

components of cylindrical shells for modal analysis are expanded as: 
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  (27) 

in which k and ω denote the circumferential wavenumber and natural frequency of the cylindrical 

shell, respectively. 

By substituting Eq. (27) into the motion equations without considering external forces, 

and then employing the DQM on the resulting equations, the following formulas can be 

obtained: 
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Substituting boundaries into Eq. (28), the obtained equations are rewritten into matrix form 

as: 
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After eliminating the vector ub, the resulting equations can be described as: 

  2  dM K u 0   (30) 

in which M denotes the mass matrix, K is stiffness matrix, and ud refer to a vector. The 

eigenvalues of the following matrix are the natural frequencies, and the eigenvalue matrix is 

given as: 
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4.2 Transient response solution 

The trigonometric series are taken to expand the displacement components and external 

loads on the mid-surface of the cylindrical shells in the circumferential direction, and the 

detailed expansion forms of displacement components and external loads are presented as: 
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  (32) 

Substituting Eq. (32) into Eq. (19) and the motion equations processed by Laplace transform 

are expressed as: 
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Employing the DQM on Eq. (33) and the following equations can be given: 
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The matrix form of Eq. (34) can be stated as: 

 H U F   (35) 

in which 
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The expressions of matrix H are detailed in Appendix A. 

The general boundaries of the elastically restrained shells processed by the trigonometric 

series expansion and Laplace transform can be stated as (x=0): 
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  (38) 

By substituting Eq. (37) into Eq. (35), and the elements corresponding to boundaries in 

matrices Hij are available in Appendix B. 

After finding the solution of Eq. (35), the time-history responses of cylindrical shells are 

obtained by using the Durbin’s inverse Laplace transform. 

5. Numerical results 

A Mathematica package was developed to present the numerical results in this paper, and 

the following steps are taken to evaluate the model. Firstly, the frequency parameters of thin 

cylindrical shells are calculated. Subsequently, the convergence of results for different 

numbers of grid points (N) in the axial direction and the validity of the present method is 

estimated. Thirdly, the time-history responses derived by classical shell theory and first-order 

shear deformation theory are compared. Fourthly, the influences of various boundaries on 

cylindrical shell displacement are investigated. Lastly, the influences of length-radius ratios 

(l/R) and thickness-radius ratios (h/R) on time-history response are assessed. Considering a set 
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of model parameters used in following numerical calculation, the system parameters used in 

the present work are given as follows: 

E=70GPa, μ=0.3, ρ=2707kg/m
3
, l=2m, R=0.5m, h=0.002m. 

In order to guarantee the convergence and accuracy of the results, the 

Chebyshev-Gauss-Lobatto grid points are used in present work and are defined as: 

 
1

1 cos ,   1,2, ,...
2 1

l
x N

N



 

   
    

  
  (39) 

in which N denotes the number of grid points in the axial direction, and it is taken as 11 in the 

following numerical examples. 

5.1 Natural frequencies 

To prove the correctness of the present method for the modal analysis of thin cylindrical 

shells, a series of calculated results will be compared with the frequency parameters from the 

literature. The length-radius ratio l/R=20 and Poisson’s ratio μ=0.3 are adopted in the 

following calculations. Table 1 presents the frequency parameters of cylindrical shells under 

three different boundaries, m and k refer to the axial and circumferential wavenumbers, 

respectively. It can be found from Table 1 that the frequency parameters produced by the 

differential quadrature method are consistent with the results obtained by Loy et al. (1997). 

Table 2 shows the frequency parameters of a SD-SD cylindrical shell under different 

thickness-radius ratios. As shown in Table 2, the frequency parameters generated by the 

proposed method fits well with the results calculated by Markuš (1988) and Loy et al. (1997). 

The frequency parameters of a different cylindrical shell with C-SD boundary are again 

compared in Table 3, which also shows a good agreement between the results produced by the 

present method and results from the literature. 

Table 1 Frequency parameters of a thin cylindrical shell with three different boundaries 

(h/R=0.01). 

k 

Frequency parameters  21R E       

SD-SD C-C C-SD 

Loy et al. 

(1997) 

Present 
Loy et al. 

(1997) 

Present 
Loy et al. 

(1997) 

Present 

1 0.016101 0.016101 0.032885 0.032884 0.023974 0.023976 

2 0.009382 0.009378 0.013923 0.013929 0.011225 0.011221 

3 0.022105 0.022103 0.022672 0.022668 0.022310 0.022308 

4 0.042095 0.042094 0.042208 0.042207 0.042139 0.042137 

5 0.068008 0.068007 0.068046 0.068045 0.068024 0.068023 

6 0.099730 0.099729 0.099748 0.099747 0.099738 0.099737 

7 0.137239 0.137238 0.137249 0.137249 0.137244 0.137243 

8 0.180527 0.180527 0.180535 0.180534 0.180531 0.180531 

9 0.229594 0.229593 0.229599 0.229598 0.229596 0.229596 

10 0.284435 0.284435 0.284439 0.284439 0.284437 0.284437 

Table 2 Frequency parameters of SD-SD cylindrical shells. 
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 Frequency parameters  21R E      

k 

h/R=0.05 h/R=0.002 

Markuš 

(1988) 

Loy et al. 

(1997) 
Present 

Markuš 

(1988) 

Loy et al. 

(1997) 
Present 

1 0.0161063 0.01610 0.0161029 0.0161011 0.016101 0.0161011 

2 0.0392332 0.03930 0.0392710 0.00545243 0.005453 0.00545297 

3 0.109477 0.109824 0.1098116 0.00503724 0.005042 0.00504148 

4 0.209008 0.210284 0.2102773 0.00853409 0.008534 0.00853382 

Table 3 Frequency parameters of C-SD cylindrical shells (h/R=0.002). 

Frequency parameters  21R E      

k 

Lam and 

Loy 

(1995) 

Loy et al. 

(1997) 
Present k 

Lam and 

Loy 

(1995) 

Loy et al. 

(1997) 
Present 

1 0.024830 0.023974 0.023976 6 0.019974 0.019973 0.019972 

2 0.008410 0.008223 0.008222 7 0.027461 0.027460 0.027460 

3 0.005897 0.005842 0.005842 8 0.036113 0.36112 0.036112 

4 0.008717 0.008705 0.008705 9 0.045924 0.045923 0.045923 

5 0.013682 0.013679 0.013679 10 0.056891 0.056890 0.056890 

 
(a) different boundaries 
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(b) different thickness-radius ratios h/R 

 

(c) different length-radius ratios l/R 

Fig. 2. Variations of frequency parameters versus circumferential wavenumber k: (a) different 

boundaries; (b) different thickness-radius ratios h/R.; (c) different length-radius ratios l/R. 

Frequency parameters of a cylindrical shell with different boundaries, thickness-radius 

ratios, and length-radius ratios are plotted in Fig. 2. Circumferential wavenumbers ranging 

from 1 to 10 are considered here. As is shown this figure, with the increase of the 

circumferential wavenumber k, the general variation trend of frequency parameters decreases 

first and then increase. Frequency parameters for different boundaries coincide with each 

other when the circumferential wavenumber k≥3, and this indicates that the boundary type has 

a significant influence on frequency parameters corresponding to low circumferential 

wavenumbers. Furthermore, the frequency parameters increase with the increase of the 

thickness-radius ratios or decrease with the increase of the length-radius ratios. As can be seen 

from this figure, the effects of the thickness-radius ratios on the frequency parameters are 

mainly reflected in the case that the circumferential wavenumber k≥2, while the effects of the 

length-radius ratios on the frequency parameters are mainly reflected in the case that the 
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circumferential wavenumber k≤3. 

5.2 Convergence and validation 

To demonstrate the superiority of the developed approach used in this paper, the 

convergence of the developed approach is investigated with different number N of grid points 

along the axial direction. A series of grid points, N = 5, 7, 9, 11 and 13, is used for this. Fig. 3 

shows the influences of grid points on the time-history response of a cylindrical shell at a 

chosen position (x=l/2, θ=0, z=0) and displacements of each point on the x-axis at a time 

when t=0.26s. It is evident that the results tend to be stable and consistent when the number of 

grid points is higher than 7, which suggests that the convergence rate of the developed 

approach used in the present work is fast. Moreover, in order to illustrate the merit of the 

proposed method in improving computation speed, the time required to use the developed 

method for calculating the dynamic response of the cylindrical shell is compared with the 

time required to adopt the Navier method. As is shown in Table 4, the time required to use the 

proposed method for calculating the dynamic response of the cylindrical shell is much less 

than the time required to the Navier method, and it indicates that the developed method is 

much more efficient than the Navier method in obtaining the dynamic response of the 

cylindrical shell. 

Table 4 The time required to use different methods for calculating dynamic responses of the 

cylindrical shell. 

Methods 1
st
 2

nd
 3

rd
 Average time (s) 

NGP (The 

present 

method) 

5 249.876 249.929 248.837 249.547 

7 369.504 372.406 370.019 370.718 

9 665.313 662.661 668.121 665.365 

The Navier method 1096.38 1089.37 1092.16 1092.64 

* NDP: the number of grid points 

To prove the effectiveness of the present method, response results of cylindrical shells 

with SD-SD boundary are also compared with Navier’s solution. The displacement 

components of a cylindrical shell with SD-SD boundary at the ends in terms of the Navier 

method can be expanded as follows: 
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  (40) 

where umn(t), vmn(t) and wmn(t) represent generalized coordinates, m and n denote the axial half 

wavenumber and circumferential wavenumber, respectively. 

The results of the time-history response of the cylindrical shell with SD-SD boundary at 

a chosen position (x=l/2, θ=0, z=0) obtained by the two methods are compared in Fig. 4. As 

shown in this figure, the result derived from the semi-analytical method is in great agreement 
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with the Navier’s solution. 

 

 

Fig. 3. The time-history curves of a SD-SD cylindrical shell at a chosen position (x=l/2, θ=0, 

z=0) under different grid points and displacement of all grid points at a time when t=0.26s. 

 

Fig. 4. The time-history curves of a SD-SD cylindrical shell at a chosen position (x=l/2, θ=0, 

z=0) using the Navier method and the present method. 
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5.3 Comparison of different shell theories 

The influences of shell theories on the time-history responses of the cylindrical shell are 

analyzed. The results obtained by classical shell theory (CST) and first-order shear 

deformation theory (FSDT) with different boundaries and thickness-radius ratios are 

compared. Two sets of thickness-radius ratios (h/R=1/500, 1/1000) are used to present the 

time-history responses of cylindrical shells with SD-SD and C-C boundaries. As shown in Fig. 

5, the results obtained by CST and FSDT under two sets of thickness-radius ratios are in good 

agreement,  indicating that CST without considering shear deformation and rotary inertia is 

valid and accurate in calculating time-history responses of the cylindrical shell when the 

thickness-radius ratios are small enough. 

 

 

Fig. 5. The time-history curves of the cylindrical shell at a chosen position (x=l/2, θ=0, z=0) 

under SD-SD and C-C boundaries. 

5.4 The influences of boundaries at the edges 

The influences of boundaries at the edges on the time-history response of the cylindrical 

shell are studied. Four kinds of boundaries at the edges are considered: Simply 

diaphragm-Simply diaphragm boundaries (SD-SD), Clamped-Clamped boundaries (C-C), 

Clamped-Simply diaphragm boundaries (C-SD) and Clamped-Free boundaries (C-F). The 

time-history responses of cylindrical shells under various boundaries at a chosen position 
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(x=l/2, θ=0, z=0) is plotted in Fig. 6. It is evident that the peak displacement is maximum 

when the boundary is C-F, and minimum peak displacement of the cylindrical shell appears 

when the boundary is C-C, and the results indicate that the peak displacement is closely 

related to the number of edge degrees of freedom. 

 

 

Fig. 6. The time-history curves of a cylindrical shell at a chosen position (x=l/2, θ=0, z=0) 

under different boundaries and displacement of all grid points on the x-axis at a time when 

t=0.26s. 

5.5 The influences of geometric dimensioning 

The influences of geometric dimensioning including length-radius ratio l/R and 

thickness-radius ratio h/R are evaluated. Two sets of geometric dimensioning are used, the 

first series is: l/R=1, 2, 3, 4, 5 with h/R=1/250; the second series is: h/R=1/50, 1/100, 1/150, 

1/200, 1/250 with l/R=4. The time-history responses of the cylindrical shell for a given 

length-radius ratio and thickness-radius ratio at a chosen position (x=l/2, θ=0, z=0) are given 

in Fig. 7. It is found that the peak displacement increases as length-radius ratio increases. On 

the contrary, for a fixed length-radius ratio, the peak displacement increases with a decrease in 

thickness-radius ratio. 
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Fig. 7. The time-history responses of a cylindrical shell at a chosen position (x=l/2, θ=0, z=0) 

under different length-radius ratios and thickness-radius ratios. 

6. Conclusions 

In the present work, a novel semi-analytical methodology, which includes the differential 

quadrature method, the Fourier series expansion technique, and Durbin’s numerical inversion 

method, is proposed to derive the time-history responses of a cylindrical shell under various 

boundaries. 

The frequency parameters of the thin cylindrical shells are calculated and a series of 

results obtained are compared with the data from the literature. This shows that the results 

obtained by the semi-analytical approach are consistent with the results in the literature. To 

demonstrate the convergence and the validity of the results obtained, varying numbers of grid 

points along the axial direction are used and a comparison of results with the Navier’s 

solution is carried out. The results indicate that the approach used in this paper is of fast 

rapidity of convergence and high accuracy. A comparison of time-history responses derived 

by classical shell theory with results obtained by first-order shear deformation theory shows 

that the classical shell theory is accurate and precise in estimating the time-history responses 

of cylindrical shells when the thickness-radius ratio is small enough. The analysis of various 
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boundaries on the time-history response of cylindrical shells shows that the peak 

displacement of cylindrical shells has a close relationship with the number of edge degrees of 

freedom. The influences of length-radius ratios and thickness-radius ratios on the time-history 

responses of cylindrical shells are also analyzed. Parametric studies show that the peak 

displacement becomes larger as the length-radius ratio increases or the thickness-radius ratio 

decreases. 
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Table 1 Frequency parameters of a thin cylindrical shell with three different boundaries 

(h/R=0.01). 

k 

Frequency parameters  21R E       

SD-SD C-C C-SD 

Loy et al. 

(1997) 

Present 
Loy et al. 

(1997) 

Present 
Loy et al. 

(1997) 

Present 

1 0.016101 0.016101 0.032885 0.032884 0.023974 0.023976 

2 0.009382 0.009378 0.013923 0.013929 0.011225 0.011221 

3 0.022105 0.022103 0.022672 0.022668 0.022310 0.022308 

4 0.042095 0.042094 0.042208 0.042207 0.042139 0.042137 

5 0.068008 0.068007 0.068046 0.068045 0.068024 0.068023 

6 0.099730 0.099729 0.099748 0.099747 0.099738 0.099737 

7 0.137239 0.137238 0.137249 0.137249 0.137244 0.137243 

8 0.180527 0.180527 0.180535 0.180534 0.180531 0.180531 

9 0.229594 0.229593 0.229599 0.229598 0.229596 0.229596 

10 0.284435 0.284435 0.284439 0.284439 0.284437 0.284437 
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Table 2 Frequency parameters of SD-SD cylindrical shells. 

 Frequency parameters  21R E      

k 

h/R=0.05 h/R=0.002 

Markuš 

(1988) 

Loy et al. 

(1997) 
Present 

Markuš 

(1988) 

Loy et al. 

(1997) 
Present 

1 0.0161063 0.01610 0.0161029 0.0161011 0.016101 0.0161011 

2 0.0392332 0.03930 0.0392710 0.00545243 0.005453 0.00545297 

3 0.109477 0.109824 0.1098116 0.00503724 0.005042 0.00504148 

4 0.209008 0.210284 0.2102773 0.00853409 0.008534 0.00853382 
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Table 3 Frequency parameters of C-SD cylindrical shells (h/R=0.002). 

Frequency parameters  21R E      

k 

Lam and 

Loy 

(1995) 

Loy et al. 

(1997) 
Present k 

Lam and 

Loy 

(1995) 

Loy et al. 

(1997) 
Present 

1 0.024830 0.023974 0.023976 6 0.019974 0.019973 0.019972 

2 0.008410 0.008223 0.008222 7 0.027461 0.027460 0.027460 

3 0.005897 0.005842 0.005842 8 0.036113 0.36112 0.036112 

4 0.008717 0.008705 0.008705 9 0.045924 0.045923 0.045923 

5 0.013682 0.013679 0.013679 10 0.056891 0.056890 0.056890 
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Table 4 The time required to use different methods for calculating dynamic responses of the 

cylindrical shell. 

Methods 1
st
 2

nd
 3

rd
 Average time (s) 

NGP (The 

present 

method) 

5 249.876 249.929 248.837 249.547 

7 369.504 372.406 370.019 370.718 

9 665.313 662.661 668.121 665.365 

The Navier method 1096.38 1089.37 1092.16 1092.64 

* NDP: the number of grid points 
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Fig. 1. Geometry of the thin cylindrical shell subjected to a harmonic load. 
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(a) different boundaries 

 

(b) different thickness-radius ratios h/R 

 

(c) different length-radius ratios l/R 

Fig. 2. Variations of frequency parameters versus circumferential wavenumber k: (a) different 

boundaries; (b) different thickness-radius ratios h/R.; (c) different length-radius ratios l/R.  
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Fig. 3. The time-history curves of a SD-SD cylindrical shell at a chosen position (x=l/2, θ=0, 

z=0) under different grid points and displacement of all grid points at a time when t=0.26s. 
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Fig. 4. The time-history curves of a SD-SD cylindrical shell at a chosen position (x=l/2, θ=0, 

z=0) using the Navier method and the present method. 
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Fig. 5. The time-history curves of the cylindrical shell at a chosen position (x=l/2, θ=0, z=0) 

under SD-SD and C-C boundaries. 
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Fig. 6. The time-history curves of a cylindrical shell at a chosen position (x=l/2, θ=0, z=0) 

under different boundaries and displacement of all grid points on the x-axis at a time when 

t=0.26s. 
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Fig. 7. The time-history responses of a cylindrical shell at a chosen position (x=l/2, θ=0, z=0) 

under different length-radius ratios and thickness-radius ratios. 
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