2,096 research outputs found

    Room-temperature multiferroic hexagonal LuFeO3_3 films

    Get PDF
    The crystal and magnetic structures of single-crystalline hexagonal LuFeO3_3 films have been studied using x-ray, electron and neutron diffraction methods. The polar structure of these films are found to persist up to 1050 K; and the switchability of the polar behavior is observed at room temperature, indicating ferroelectricity. An antiferromagnetic order was shown to occur below 440 K, followed by a spin reorientation resulting in a weak ferromagnetic order below 130 K. This observation of coexisting multiple ferroic orders demonstrates that hexagonal LuFeO3_3 films are room-temperature multiferroics

    Growth Diagram and Magnetic Properties of Hexagonal LuFe2O4 Thin Films

    Get PDF
    A growth diagram of Lu-Fe-O compounds on MgO(111) substrates using pulsed laser deposition is constructed based on extensive growth experiments. The LuFe2O4 phase can only be grown in a small range of temperature and O2 pressure conditions. An understanding of the growth mechanism of Lu-Fe-O compound films is offered in terms of the thermochemistry at the surface. Superparamagnetism is observed in the LuFe2O4 film and is explained in terms of the effect of the impurity hexagonal LuFeO3 (h-LuFeO3) phase and structural defects

    Growth diagram and magnetic properties of hexagonal LuFe2O4 thin films

    Get PDF
    Agrowth diagram of Lu-Fe-O compounds on MgO (111) substrates using pulsed laser deposition is constructed based on extensive growth experiments. The LuFe2O4 phase can only be grown in a small range of temperature and O2 pressure conditions. An understanding of the growth mechanism of Lu-Fe-O compound films is offered in terms of the thermochemistry at the surface. Superparamagnetism is observed in the LuFe2O4 film and is explained in terms of the effect of the impurity hexagonal LuFeO3 (h-LuFeO3) phase and structural defects

    Infant RSV immunoprophylaxis changes nasal epithelial DNA methylation at 6 years of age

    Get PDF
    BackgroundRespiratory syncytial virus (RSV) infection has been associated with childhood wheeze and asthma, and potential mechanisms include persistent epigenetic effects.MethodsIn the randomized, placebo-controlled MAKI trial, 429 preterm infants randomly received RSV immunoprophylaxis with palivizumab or placebo during their first RSV season. Children were followed until age 6 for asthma evaluation. DNA methylation in cells obtained by nasal brushes at age 6 was measured by Illumina MethylationEPIC array.ResultsRSV immunoprophylaxis in infancy had a significant impact on global methylation patterns in nasal cells at age 6. The first principal component (PC) related to the immunoprophylaxis intervention was enriched for the pathway "detection of chemical stimulus involved in sensory perception of smell" and "T cell differentiation." Subsequent analysis of these PCs indicated an effect of RSV immunoprophylaxis on cell type composition of nasal brushed cells. Three CpG sites, cg18040241, cg08243963, and cg19555973 which are annotated to genes GLB1L2, SC5D, and BPIFB1, were differentially methylated at genome-wide significance, but were not associated with asthma. ConclusionThe study provides the first proof of concept that RSV immunoprophylaxis during infancy has long-term effects on nasal epigenetic signatures at age 6, relating to host sensory perception, epidermal growth factor receptor signaling, and adaptive immune responses.</p

    Growth diagram and magnetic properties of hexagonal LuFe2O4 thin films

    Get PDF
    Agrowth diagram of Lu-Fe-O compounds on MgO (111) substrates using pulsed laser deposition is constructed based on extensive growth experiments. The LuFe2O4 phase can only be grown in a small range of temperature and O2 pressure conditions. An understanding of the growth mechanism of Lu-Fe-O compound films is offered in terms of the thermochemistry at the surface. Superparamagnetism is observed in the LuFe2O4 film and is explained in terms of the effect of the impurity hexagonal LuFeO3 (h-LuFeO3) phase and structural defects

    Three-dimensionally Ordered Macroporous Structure Enabled Nanothermite Membrane of Mn2O3/Al

    Get PDF
    Mn2O3 has been selected to realize nanothermite membrane for the first time in the literature. Mn2O3/Al nanothermite has been synthesized by magnetron sputtering a layer of Al film onto three-dimensionally ordered macroporous (3DOM) Mn2O3 skeleton. The energy release is significantly enhanced owing to the unusual 3DOM structure, which ensures Al and Mn2O3 to integrate compactly in nanoscale and greatly increase effective contact area. The morphology and DSC curve of the nanothermite membrane have been investigated at various aluminizing times. At the optimized aluminizing time of 30 min, energy release reaches a maximum of 2.09 kJ∙g−1, where the Al layer thickness plays a decisive role in the total energy release. This method possesses advantages of high compatibility with MEMS and can be applied to other nanothermite systems easily, which will make great contribution to little-known nanothermite research

    Room-Temperature Multiferroic Hexagonal LuFeO\u3csub\u3e3\u3c/sub\u3e Films

    Get PDF
    The crystal and magnetic structures of single-crystalline hexagonal LuFeO3 films have been studied using x-ray, electron, and neutron diffraction methods. The polar structure of these films are found to persist up to 1050 K; and the switchability of the polar behavior is observed at room temperature, indicating ferroelectricity. An antiferromagnetic order was shown to occur below 440 K, followed by a spin reorientation resulting in a weak ferromagnetic order below 130 K. This observation of coexisting multiple ferroic orders demonstrates that hexagonal LuFeO3 films are room-temperature multiferroics

    Experimental demonstration of a hyper-entangled ten-qubit Schr\"odinger cat state

    Full text link
    Coherent manipulation of an increasing number of qubits for the generation of entangled states has been an important goal and benchmark in the emerging field of quantum information science. The multiparticle entangled states serve as physical resources for measurement-based quantum computing and high-precision quantum metrology. However, their experimental preparation has proved extremely challenging. To date, entangled states up to six, eight atoms, or six photonic qubits have been demonstrated. Here, by exploiting both the photons' polarization and momentum degrees of freedom, we report the creation of hyper-entangled six-, eight-, and ten-qubit Schr\"odinger cat states. We characterize the cat states by evaluating their fidelities and detecting the presence of genuine multi-partite entanglement. Small modifications of the experimental setup will allow the generation of various graph states up to ten qubits. Our method provides a shortcut to expand the effective Hilbert space, opening up interesting applications such as quantum-enhanced super-resolving phase measurement, graph-state generation for anyonic simulation and topological error correction, and novel tests of nonlocality with hyper-entanglement.Comment: 11 pages, 5 figures, comments welcom

    Epigenome-Wide DNA Methylation and Pesticide Use in the Agricultural Lung Health Study

    Get PDF
    Using family-wise error rate (p<9×10-8) or false-discovery rate (FDR<0.05), we identified 162 differentially methylated CpGs across 8 of 9 currently marketed active ingredients (acetochlor, atrazine, dicamba, glyphosate, malathion, metolachlor, mesotrione, and picloram) and one banned organochlorine (heptachlor). Differentially methylated CpGs were unique to each active ingredient, and a dose-response relationship with lifetime days of use was observed for most. Significant CpGs were enriched for transcription motifs and 28% of CpGs were associated with whole blood cis-gene expression, supporting functional effects of findings. We corroborated a previously reported association between dichlorodiphenyltrichloroethane (banned in the United States in 1972) and epigenetic age acceleration

    The Genetic Risk for COVID-19 Severity Is Associated With Defective Immune Responses

    Get PDF
    Recent genome-wide association studies (GWASs) of COVID-19 patients of European ancestry have identified genetic loci significantly associated with disease severity. Here, we employed the detailed clinical, immunological and multi-omics dataset of the Human Functional Genomics Project (HFGP) to explore the physiological significance of the host genetic variants that influence susceptibility to severe COVID-19. A genomics investigation intersected with functional characterization of individuals with high genetic risk for severe COVID-19 susceptibility identified several major patterns: i. a large impact of genetically determined innate immune responses in COVID-19, with ii. increased susceptibility for severe disease in individuals with defective cytokine production; iii. genetic susceptibility related to ABO blood groups is probably mediated through the von Willebrand factor (VWF) and endothelial dysfunction. We further validated these identified associations at transcript and protein levels by using independent disease cohorts. These insights allow a physiological understanding of genetic susceptibility to severe COVID-19, and indicate pathways that could be targeted for prevention and therapy
    • …
    corecore