540 research outputs found

    Hysteresis behavior of reinforced concrete bridge piers considering strength and stiffness degradation and pinching effect

    Get PDF
    In order to effectively simulate the nonlinear hysteresis behavior of reinforced concrete (RC) bridge piers under strong earthquake excitation, an improved nonlinear hysteresis model for RC bridge piers was developed and its controlling parameters were determined considering stiffness and strength degradation and pinching effect based on classical Bouc-Wen model. The improved model can be carried out to predict the nonlinear hysteresis behavior of RC bridge piers under various failure modes using MATLAB/ Simulink program. Cyclic tests of different failure mode bridge column specimens were performed under constant axial load with lateral bending. The results did show that force-displacement relationship curves of bridge column specimens derived from theoretical analysis agree well with experimental results. The nonlinear hysteresis behavior of bridge column specimen was simulated under 2008 Wenchuan earthquake excitation and its failure modes were identical with real earthquake damage of bridge column. The improved analytical models in the paper were applied to accurately predicting the nonlinear hysteresis behavior of RC bridge columns with strength and stiffness degradations and the pinching effect subjected to strong earthquake motion

    Stability and Hopf bifurcation of a diffusive Gompertz population model with nonlocal delay effect

    Get PDF
    In this paper, we investigate the dynamics of a diffusive Gompertz population model with nonlocal delay effect and Dirichlet boundary condition. The stability of the positive spatially nonhomogeneous steady-state solutions and the existence of Hopf bifurcations with the change of the time delay are discussed by analyzing the distribution of eigenvalues of the infinitesimal generator associated with the linearized system. Then we derive the stability and bifurcation direction of Hopf bifurcating periodic orbits by using the normal form theory and the center manifold reduction. Finally, we give some numerical simulations

    Hysteresis behavior of reinforced concrete bridge piers considering strength and stiffness degradation and pinching effect

    Get PDF
    In order to effectively simulate the nonlinear hysteresis behavior of reinforced concrete (RC) bridge piers under strong earthquake excitation, an improved nonlinear hysteresis model for RC bridge piers was developed and its controlling parameters were determined considering stiffness and strength degradation and pinching effect based on classical Bouc-Wen model. The improved model can be carried out to predict the nonlinear hysteresis behavior of RC bridge piers under various failure modes using MATLAB/ Simulink program. Cyclic tests of different failure mode bridge column specimens were performed under constant axial load with lateral bending. The results did show that force-displacement relationship curves of bridge column specimens derived from theoretical analysis agree well with experimental results. The nonlinear hysteresis behavior of bridge column specimen was simulated under 2008 Wenchuan earthquake excitation and its failure modes were identical with real earthquake damage of bridge column. The improved analytical models in the paper were applied to accurately predicting the nonlinear hysteresis behavior of RC bridge columns with strength and stiffness degradations and the pinching effect subjected to strong earthquake motion

    Insufficient Radiofrequency Ablation Promotes Angiogenesis of Residual Hepatocellular Carcinoma Via HIF-1α/VEGFA

    Get PDF
    Background: The mechanism of rapid growth of the residual tumor after radiofrequency (RF) ablation is poorly understood. In this study, we investigated the effect of hyperthermia on HepG2 cells and generated a subline with enhanced viability and dys-regulated angiogenesis in vivo, which was used as a model to further determine the molecular mechanism of the rapid growth of residual HCC after RF ablation. Methodology/Principal Findings: Heat treatment was used to establish sublines of HepG2 cells. A subline (HepG2 k) with a relatively higher viability and significant heat tolerance was selected. The cellular protein levels of VEGFA, HIF-1α and p-Akt, VEGFA mRNA and secreted VEGFA were measured, and all of these were up-regulated in this subline compared to parental HepG2 cells. HIF-1α inhibitor YC-1 and VEGFA siRNA inhibited the high viability of the subline. The conditioned media from the subline exerted stronger pro-angiogenic effects. Bevacizumab, VEGFA siRNA and YC-1 inhibited proangiogenic effects of the conditioned media of HepG2 k cells and abolished the difference between parental HepG2 cells and HepG2 k cells. For in vivo studies, a nude mouse model was used, and the efficacy of bavacizumab was determined. HepG2 k tumor had stronger pro-angiogenic effects than parental HepG2 tumor. Bevacizumab could inhibit the tumor growth and angiogenesis, and also eliminate the difference in tumor growth and angiogenesis between parental HepG2 tumor and HepG2 k tumor in vivo. Conclusions/Significance: The angiogenesis induced by HIF1α/VEGFA produced by altered cells after hyperthermia treatment may play an important role in the rapid growth of residual HCC after RF ablation. Bevacizumab may be a good candidate drug for preventing and treating the process

    Hysteresis behavior of reinforced concrete bridge piers considering strength and stiffness degradation and pinching effect

    Get PDF
    In order to effectively simulate the nonlinear hysteresis behavior of reinforced concrete (RC) bridge piers under strong earthquake excitation, an improved nonlinear hysteresis model for RC bridge piers was developed and its controlling parameters were determined considering stiffness and strength degradation and pinching effect based on classical Bouc-Wen model. The improved model can be carried out to predict the nonlinear hysteresis behavior of RC bridge piers under various failure modes using MATLAB/ Simulink program. Cyclic tests of different failure mode bridge column specimens were performed under constant axial load with lateral bending. The results did show that force-displacement relationship curves of bridge column specimens derived from theoretical analysis agree well with experimental results. The nonlinear hysteresis behavior of bridge column specimen was simulated under 2008 Wenchuan earthquake excitation and its failure modes were identical with real earthquake damage of bridge column. The improved analytical models in the paper were applied to accurately predicting the nonlinear hysteresis behavior of RC bridge columns with strength and stiffness degradations and the pinching effect subjected to strong earthquake motion

    Metformin suppresses retinal angiogenesis and inflammation in vitro and in vivo

    Get PDF
    The oral anti-diabetic drug metformin has been found to reduce cardiovascular complications independent of glycemic control in diabetic patients. However, its role in diabetic retinal microvascular complications is not clear. This study is to investigate the effects of metformin on retinal vascular endothelium and its possible mechanisms, regarding two major pathogenic features of diabetic retinopathy: angiogenesis and inflammation. In human retinal vascular endothelial cell culture, metformin inhibited various steps of angiogenesis including endothelial cell proliferation, migration, and tube formation in a dose-dependent manner. Its anti-angiogenic activity was confirmed in vivo that metformin significantly reduced spontaneous intraretinal neovascularization in a very-low-density lipoprotein receptor knockout mutant mouse (p

    Critical Role of Toll-Like Receptor 9 in Morphine and Mycobacterium Tuberculosis-Induced Apoptosis in Mice

    Get PDF
    Background: Although it is established that opioid and Mycobacterium tuberculosis are both public health problems, the mechanisms by which they affect lung functions remain elusive. Methodology/Principal Findings: We report here that mice subjected to chronic morphine administration and M. tuberculosis infection exhibited significant apoptosis in the lung in wild type mice as demonstrated by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay. Morphine and M. tuberculosis significantly induced the expression of Toll-like receptor 9 (TLR9), a key mediator of innate immunity and inflammation. Interestingly, deficiency in TLR9 significantly inhibited the morphine and M. tuberculosis induced apoptosis in the lung. In addition, chronic morphine treatment and M. tuberculosis infection enhanced the levels of cytokines (TNF-α, IL-1β, and IL-6) in wild type mice, but not in TLR9 knockout (KO) mice. The bacterial load was much lower in TLR9 KO mice compared with that in wild type mice following morphine and M. tuberculosis treatment. Morphine alone did not alter the bacterial load in either wild type or TLR9 KO mice. Moreover, administration of morphine and M. tuberculosis decreased the levels of phosphorylation of Akt and GSK3β in the wild type mice, but not in TLR9 KO mice, suggesting an involvement of Akt/GSK3β in morphine and M. tuberculosis-mediated TLR9 signaling. Furthermore, administration of morphine and M. tuberculosis caused a dramatic decrease in Bcl-2 level but increase in Bax level in wild type mice, but not in TLR9 KO mice, indicating a role of Bcl-2 family in TLR9-mediated apoptosis in the lung following morphine and M. tuberculosis administration. Conclusions/Significance: These data reveal a role for TLR9 in the immune response to opioids during M. tuberculosis infection
    • …
    corecore