32 research outputs found

    Lhx1 Is Required for Specification of the Renal Progenitor Cell Field

    Get PDF
    In the vertebrate embryo, the kidney is derived from the intermediate mesoderm. The LIM-class homeobox transcription factor lhx1 is expressed early in the intermediate mesoderm and is one of the first genes to be expressed in the nephric mesenchyme. In this study, we investigated the role of Lhx1 in specification of the kidney field by either overexpressing or depleting lhx1 in Xenopus embryos or depleting lhx1 in an explant culture system. By overexpressing a constitutively-active form of Lhx1, we established its capacity to expand the kidney field during the specification stage of kidney organogenesis. In addition, the ability of Lhx1 to expand the kidney field diminishes as kidney organogenesis transitions to the morphogenesis stage. In a complimentary set of experiments, we determined that embryos depleted of lhx1, show an almost complete loss of the kidney field. Using an explant culture system to induce kidney tissue, we confirmed that expression of genes from both proximal and distal kidney structures is affected by the absence of lhx1. Taken together our results demonstrate an essential role for Lhx1 in driving specification of the entire kidney field from the intermediate mesoderm

    Imprecise transcription termination within Escherichia coli greA leader gives rise to an array of short transcripts, GraL

    Get PDF
    We report that greA expression is driven by two strong, overlapping P1 and P2 promoters. The P1 promoter is σ70-dependent and P2 is σE-dependent. Two-thirds of transcripts terminate within the leader region and the remaining third comprises greA mRNA. Termination efficiency seems to be unaffected by growth phase. Two collections of small 40–50 (initiating from P2) and 50–60 nt (from P1) RNA chains, termed GraL, are demonstrable in vivo and in vitro. We document that GraL arrays arise from an intrinsic terminator with an 11 bp stem followed by an AU7GCU2 sequence. Atypical chain termination occurs at multiple sites; the 3â€Č-ends differ by 1 nt over a range of 10 nt. Transcripts observed are shown to be insensitive to Gre factors and physically released from RNAP–DNA complexes. The abundance of individual chains within each cluster displays a characteristic pattern, which can be differentially altered by oligonucleotide probes. Multiple termination sites are particularly sensitive to changes at the bottom of the stem. Evolutionarily conserved GraL stem structures and fitness assays suggest a biological function for the RNA clusters themselves. Although GraL overexpression induces ≄3-fold transcriptional changes of over 100 genes, a direct target remains elusive

    A common copy-number breakpoint of ERBB2 amplification in breast cancer colocalizes with a complex block of segmental duplications

    Full text link

    The Helicobacter pylori Genome Project : insights into H. pylori population structure from analysis of a worldwide collection of complete genomes

    Get PDF
    Helicobacter pylori, a dominant member of the gastric microbiota, shares co-evolutionary history with humans. This has led to the development of genetically distinct H. pylori subpopulations associated with the geographic origin of the host and with differential gastric disease risk. Here, we provide insights into H. pylori population structure as a part of the Helicobacter pylori Genome Project (HpGP), a multi-disciplinary initiative aimed at elucidating H. pylori pathogenesis and identifying new therapeutic targets. We collected 1011 well-characterized clinical strains from 50 countries and generated high-quality genome sequences. We analysed core genome diversity and population structure of the HpGP dataset and 255 worldwide reference genomes to outline the ancestral contribution to Eurasian, African, and American populations. We found evidence of substantial contribution of population hpNorthAsia and subpopulation hspUral in Northern European H. pylori. The genomes of H. pylori isolated from northern and southern Indigenous Americans differed in that bacteria isolated in northern Indigenous communities were more similar to North Asian H. pylori while the southern had higher relatedness to hpEastAsia. Notably, we also found a highly clonal yet geographically dispersed North American subpopulation, which is negative for the cag pathogenicity island, and present in 7% of sequenced US genomes. We expect the HpGP dataset and the corresponding strains to become a major asset for H. pylori genomics

    Imprecise transcription termination within Escherichia coli greA leader gives rise to an array of short transcripts, GraL

    No full text
    ABSTRACT We report that greA expression is driven by two strong, overlapping P1 and P2 promoters. The P1 promoter is p 70 -dependent and P2 is p E -dependent. Two-thirds of transcripts terminate within the leader region and the remaining third comprises greA mRNA. Termination efficiency seems to be unaffected by growth phase. Two collections of small 40-50 (initiating from P2) and 50-60 nt (from P1) RNA chains, termed GraL, are demonstrable in vivo and in vitro. We document that GraL arrays arise from an intrinsic terminator with an 11 bp stem followed by an AU 7 GCU 2 sequence. Atypical chain termination occurs at multiple sites; the 3 0 -ends differ by 1 nt over a range of 10 nt. Transcripts observed are shown to be insensitive to Gre factors and physically released from RNAP-DNA complexes. The abundance of individual chains within each cluster displays a characteristic pattern, which can be differentially altered by oligonucleotide probes. Multiple termination sites are particularly sensitive to changes at the bottom of the stem. Evolutionarily conserved GraL stem structures and fitness assays suggest a biological function for the RNA clusters themselves. Although GraL overexpression induces !3-fold transcriptional changes of over 100 genes, a direct target remains elusive

    Genes regulated by potassium channel tetramerization domain containing 15 (Kctd15) in the developing neural crest

    No full text
    Neural crest (NC) development is controlled precisely by a regulatory network with multiple signaling pathways and the involvement of many genes. The integration and coordination of these factors are still incompletely understood. Overexpression of Wnt3a and the BMP antagonist Chordin in animal cap cells from Xenopus blastulae induces a large number of NC specific genes. We previously suggested that Potassium Channel Tetramerization Domain containing 15 (Kctd15) regulates NC formation by affecting Wnt signaling and the activity of transcription factor AP-2. In order to advance understanding of the function of Kctd15 during NC development, we performed DNA microarray assays in explants injected with Wnt3a and Chordin, and identified genes that are affected by Kctd15 overexpression. Among the many genes identified, we chose Duf domain containing protein 1 (ddcp1), Platelet-Derived Growth Factor Receptor a (pdgfra), Complement factor properdin (cfp), Zinc Finger SWIM-Type Containing 5 (zswim5), and complement component 3 (C3) to examine their expression by whole mount in situ hybridization. Our work points to a possible role for Kctd15 in the regulation of NC formation and other steps in embryonic development.Fil: Bun Wong, Thomas Chi. The Chinese University of Hong Kong; ChinaFil: Rebbert, Martha. National Institutes of Health; Estados UnidosFil: Wang, Chengdong. The Chinese University of Hong Kong; ChinaFil: Chen, Xiongfong. National Institutes of Health; Estados UnidosFil: Heffer, Alison. National Institutes of Health; Estados UnidosFil: Zarelli, Valeria Eugenia Paola. National Institutes of Health; Estados Unidos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas MĂ©dicas. Instituto de HistologĂ­a y EmbriologĂ­a de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Dawid, Igor B.. National Institutes of Health; Estados UnidosFil: Zhao, Hui. The Chinese University of Hong Kong; China. Chinese Academy of Sciences; RepĂșblica de Chin

    The proto-oncogene transcription factor Ets1 regulates neural crest development through Histone Deacetylase 1 to mediate output of bone morphogenetic protein signaling.

    No full text
    The neural crest (NC) is a transient, migratory cell population that differentiates into a large variety of tissues including craniofacial cartilage, melanocytes, and peripheral nervous system. NC is initially induced at the border of neural plate and non-neuralectoderm by balanced regulation of multiple signaling pathways, among which an intermediate bone morphogenetic protein (BMP) signaling is essential for NC formation. Ets1, a proto-oncogene playing important roles in tumor invasion, has also been implicated in delamination of NC cells. In this study, we investigated Ets1 function in NC formation using Xenopus. Overexpression of ets1 repressed NC formation through down-regulation of BMP signaling. Moreover, ets1 repressed the BMP-responsive gene id3 that is essential for NC formation. Conversely, overexpression of id3 can partially rescue the phenotype of NC inhibition induced by ectopic ets1. Mechanistically, we found that Ets1 binds to id3 promoter as well as Histone Deacetylase 1 (HDAC1), suggesting that Ets1 recruits HDAC1 to the promoter of id3, thereby inducing Histone deacetylation of the id3 promoter. Thus, our studies indicate that Ets1 regulates NC formation through attenuating BMP signaling epigenetically

    Impediment of Replication Forks by Long Non-coding RNA Provokes Chromosomal Rearrangements by Error-Prone Restart

    No full text
    Naturally stalled replication forks are considered to cause structurally abnormal chromosomes in tumor cells. However, underlying mechanisms remain speculative, as capturing naturally stalled forks has been a challenge. Here, we captured naturally stalled forks in tumor cells and delineated molecular processes underlying the structural evolution of circular mini-chromosomes (double-minute chromosomes; DMs). Replication forks stalled on the DM by the co-directional collision with the transcription machinery for long non-coding RNA. RPA, BRCA2, and DNA polymerase eta (Polη) were recruited to the stalled forks. The recruitment of Polη was critical for replication to continue, as Polη knockdown resulted in DM loss. Rescued stalled forks were error-prone and switched replication templates repeatedly to create complex fusions of multiple short genomic segments. In mice, such complex fusions circularized the genomic region surrounding MYC to create a DM during tumorigenesis. Our results define a molecular path that guides stalled replication forks to complex chromosomal rearrangements

    The full transcription map of mouse papillomavirus type 1 (MmuPV1) in mouse wart tissues

    No full text
    <div><p>Mouse papillomavirus type 1 (MmuPV1) provides, for the first time, the opportunity to study infection and pathogenesis of papillomaviruses in the context of laboratory mice. In this report, we define the transcriptome of MmuPV1 genome present in papillomas arising in experimentally infected mice using a combination of RNA-seq, PacBio Iso-seq, 5’ RACE, 3’ RACE, primer-walking RT-PCR, RNase protection, Northern blot and <i>in situ</i> hybridization analyses. We demonstrate that the MmuPV1 genome is transcribed unidirectionally from five major promoters (P) or transcription start sites (TSS) and polyadenylates its transcripts at two major polyadenylation (pA) sites. We designate the P<sub>7503</sub>, P<sub>360</sub> and P<sub>859</sub> as “early” promoters because they give rise to transcripts mostly utilizing the polyadenylation signal at nt 3844 and therefore can only encode early genes, and P<sub>7107</sub> and P<sub>533</sub> as “late” promoters because they give rise to transcripts utilizing polyadenylation signals at either nt 3844 or nt 7047, the latter being able to encode late, capsid proteins. MmuPV1 genome contains five splice donor sites and three acceptor sites that produce thirty-six RNA isoforms deduced to express seven predicted early gene products (E6, E7, E1, E1^M1, E1^M2, E2 and E8^E2) and three predicted late gene products (E1^E4, L2 and L1). The majority of the viral early transcripts are spliced once from nt 757 to 3139, while viral late transcripts, which are predicted to encode L1, are spliced twice, first from nt 7243 to either nt 3139 (P<sub>7107</sub>) or nt 757 to 3139 (P<sub>533</sub>) and second from nt 3431 to nt 5372. Thirteen of these viral transcripts were detectable by Northern blot analysis, with the P<sub>533</sub>-derived late E1^E4 transcripts being the most abundant. The late transcripts could be detected in highly differentiated keratinocytes of MmuPV1-infected tissues as early as ten days after MmuPV1 inoculation and correlated with detection of L1 protein and viral DNA amplification. In mature warts, detection of L1 was also found in more poorly differentiated cells, as previously reported. Subclinical infections were also observed. The comprehensive transcription map of MmuPV1 generated in this study provides further evidence that MmuPV1 is similar to high-risk cutaneous beta human papillomaviruses. The knowledge revealed will facilitate the use of MmuPV1 as an animal virus model for understanding of human papillomavirus gene expression, pathogenesis and immunology.</p></div
    corecore