6,945 research outputs found

    Macroscopical Entangled Coherent State Generator in V configuration atom system

    Full text link
    In this paper, we propose a scheme to produce pure and macroscopical entangled coherent state. When a three-level ''V'' configuration atom interacts with a doubly reasonant cavity, under the strong classical driven condition, entangled coherent state can be generated from vacuum fields. An analytical solution for this system under the presence of cavity losses is also given

    KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation.

    Get PDF
    KDM2B (also known as FBXL10) controls stem cell self-renewal, somatic cell reprogramming and senescence, and tumorigenesis. KDM2B contains multiple functional domains, including a JmjC domain that catalyzes H3K36 demethylation and a CxxC zinc-finger that recognizes CpG islands and recruits the polycomb repressive complex 1. Here, we report that KDM2B, via its F-box domain, functions as a subunit of the CUL1-RING ubiquitin ligase (CRL1/SCF(KDM2B)) complex. KDM2B targets c-Fos for polyubiquitylation and regulates c-Fos protein levels. Unlike the phosphorylation of other SCF (SKP1-CUL1-F-box)/CRL1 substrates that promotes substrates binding to F-box, epidermal growth factor (EGF)-induced c-Fos S374 phosphorylation dissociates c-Fos from KDM2B and stabilizes c-Fos protein. Non-phosphorylatable and phosphomimetic mutations at S374 result in c-Fos protein which cannot be induced by EGF or accumulates constitutively and lead to decreased or increased cell proliferation, respectively. Multiple tumor-derived KDM2B mutations impaired the function of KDM2B to target c-Fos degradation and to suppress cell proliferation. These results reveal a novel function of KDM2B in the negative regulation of cell proliferation by assembling an E3 ligase to targeting c-Fos protein degradation that is antagonized by mitogenic stimulations

    TfR Binding Peptide Screened by Phage Display Technology - Characterization to Target Cancer Cells

    Get PDF
    Purpose: To screen an hTfR affinity peptide and investigate its activity in vitro.Methods: hTfR affinity phage clones were screened from 7-mer phage display library, and their binding ability evaluated by enzyme-linked immunosorbent assay (ELISA). A competitive assay was performed to discover the peptide BP9 (BP9) binding site on the cells. The inhibitory effect of BP9 on the cells was determined using thiazolyl blue (MTT) assay. EGFP-BP9 fusion protein was expressed in E. coli, and its binding and localization on cells were determined by fluorescence microscopy and confocal microscopy, respectively.Results: After three rounds of panning, recovery efficiency was 48-fold higher than that of the first round. The peptide BP9 sharing 2 identical amino acids to Tf showed high-affinity to hTfR, and possessed strong proliferation inhibition ratio on different tumour cells of 70 % (HepG2 cells)/77 % (SMMC-7221 cells) at a concentration of 0.1 mM, and 85 % (HepG2 cells)/81 % (SMMC-7221 cells) at a concentration of 0.001 mM for 48 h. The recombinant protein EGFP–BP9 could bind to tumour cells andgain entry via the endocytic pathway.Conclusion: BP9 can bind to TfR and inhibit the proliferation of the tumour cells over-expressing TfR. The DNA sequence coding for BP9 was able to target the macromolecule to combine with TfR. BP9 may possess potential applications in cancer therapy.Keywords: Peptide, hTfR, Transferrin receptor, Phage display technology, Enhanced green fluorescence protein, Target, Cancer cell

    Tianjin Mandarin

    Get PDF
    Tianjin Mandarin is a member of the northern Mandarin Chinese family (ISO 693-3: [cmn]). It is spoken in the urban areas of the Tianjin Municipality (CN-12) in the People’s Republic of China, which is about 120 kilometers to the southeast of Beijing. Existing studies on Tianjin Mandarin have focused mainly on its tonal aspects, especially its intriguing tone sandhi system, with few studies examining the segmental aspects (on tone, see e.g., Li & Liu, 1985; Shi, 1986; Liu, 1993; Lu, 1997; Wang & Jiang, 1997; Chen, 2000; Liu & Gao, 2003; Ma, 2005; Ma & Jia, 2006; Zhang & Liu, 2011; Li & Chen, 2016; on segmental aspects, see e.g., Han, 1993a, 1993b; Wee, Yan, & Chen, 2005). As also noted in Wee et al. (2005), this is probably due to the similarity in segmental structures between Tianjin Mandarin and Standard Chinese, especially among speakers of the younger generation, and what differentiates the two Mandarin varieties is most notably their tonal systems. The aim of the present description is therefore to provide a systematic phonetic description of both segmental and tonal aspects of Tianjin Mandarin, with main focus on the tonal aspects.Theoretical and Experimental Linguistic

    Crashworthiness design of a steel–aluminum hybrid rail using multi-response objective-oriented sequential optimization

    Full text link
    © 2017 Elsevier Ltd Hybrid structures with different materials have aroused increasing interest for their lightweight potential and excellent performances. This study explored the optimization design of steel–aluminum hybrid structures for the highly nonlinear impact scenario. A metamodel based multi-response objective-oriented sequential optimization was adopted, where Kriging models were updated with sequential training points. It was indicated that the sequential sampling strategy was able to obtain a much higher local accuracy in the neighborhood of the optimum and thus to yield a better optimum, although it did lead to a worse global accuracy over the entire design space. Furthermore, it was observed that the steel–aluminum hybrid structure was capable of decreasing the peak force and simultaneously enhancing the energy absorption, compared to the conventional mono-material structure

    Effect of shell thickness on small-molecule solar cells enhanced by dual plasmonic gold-silica nanorods

    Get PDF
    Cataloged from PDF version of article.Chemically synthesized gold (Au)-silica nanorods with shell thickness of 0 nm-10 nm were incorporated into the bulk heterojunction of a small-molecule organic solar cell. At optimal (1 wt. %) concentration, Au-silica nanorods with 5 nm shell thickness resulted in the highest power conversion efficiency of 8.29% with 27% relative enhancement. Finite-difference time-domain simulation shows that the localized electric field intensity at the silica shell-organic layer interface decreases with the increase of shell thickness for both 520 nm and 680 nm resonance peaks. The enhanced haze factor for transmission/reflection of the organic layer is not strongly dependent on the shell thickness. Bare Au nanorods yielded the lowest efficiency of 5.4%. Light intensity dependence measurement of the short-circuit current density shows that the silica shell reduces bimolecular recombination at the Au surface. As a result, both localized field intensity and light scattering are involved in efficiency enhancement for an optimized shell thickness of 5 nm. (C) 2014 AIP Publishing LLC
    • …
    corecore