43 research outputs found

    Extended Wiener-Khinchin theorem for quantum spectral analysis

    Full text link
    The classical Wiener-Khinchin theorem (WKT), which can extract spectral information by classical interferometers through Fourier transform, is a fundamental theorem used in many disciplines. However, there is still need for a quantum version of WKT, which could connect correlated biphoton spectral information by quantum interferometers. Here, we extend the classical WKT to its quantum counterpart, i.e., extended WKT (e-WKT), which is based on two-photon quantum interferometry. According to the e-WKT, the difference-frequency distribution of the biphoton wavefunctions can be extracted by applying a Fourier transform on the time-domain Hong-Ou-Mandel interference (HOMI) patterns, while the sum-frequency distribution can be extracted by applying a Fourier transform on the time-domain NOON state interference (NOONI) patterns. We also experimentally verified the WKT and e-WKT in a Mach-Zehnder interference (MZI), a HOMI and a NOONI. This theorem can be directly applied to quantum spectroscopy, where the spectral correlation information of biphotons can be obtained from time-domain quantum interferences by Fourier transform. This may open a new pathway for the study of light-matter interaction at the single photon level.Comment: 13 pages, 5 figure

    Phosphorylation of plant virus proteins: Analysis methods and biological functions

    Get PDF
    Phosphorylation is one of the most extensively investigated post-translational modifications that orchestrate a variety of cellular signal transduction processes. The phosphorylation of virus-encoded proteins plays an important regulatory role in the infection cycle of such viruses in plants. In recent years, molecular mechanisms underlying the phosphorylation of plant viral proteins have been widely studied. Based on recent publications, our study summarizes the phosphorylation analyses of plant viral proteins and categorizes their effects on biological functions according to the viral life cycle. This review provides a theoretical basis for elucidating the molecular mechanisms of viral infection. Furthermore, it deepens our understanding of the biological functions of phosphorylation in the interactions between plants and viruses

    Perpendicular in-plane negative magnetoresistance in ZrTe5

    Full text link
    The unique band structure in topological materials frequently results in unusual magneto-transport phenomena, one of which is in-plane longitudinal negative magnetoresistance (NMR) with the magnetic field aligned parallel to the electrical current direction. This NMR is widely considered as a hallmark of chiral anomaly in topological materials. Here we report the observation of in-plane NMR in the topological material ZrTe5 when the in-plane magnetic field is both parallel and perpendicular to the current direction, revealing an unusual case of quantum transport beyond the chiral anomaly. We find that a general theoretical model, which considers the combined effect of Berry curvature and orbital moment, can quantitatively explain this in-plane NMR. Our results provide new insights into the understanding of in-plane NMR in topological materials

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat
    corecore