262 research outputs found

    A KINEMATIC ANALYSIS OF A TOP 10 WTA TENNIS PLAYER’S FIRST SERVE

    Get PDF
    The purpose of this study was to provide valuable information of the tennis serve, through a three-dimensional (3D) cinematographic analysis of Li Na’s flat serve. Two high-speed cameras operating at 200Hz placed around the baseline recorded her flat service motion. The direct linear transformation (DLT) method was used. The ball was hit at a distance of 1.11 m below a peak ball toss height of 3.65 m. In backswing, the minimum knee flexion angle was about 110°. The lowest point recorded by the racket head was about 0.21 m lower than the height of the body center of gravity during the early drive phase. The velocity of the racket head was 38.2 m/s at impact and the height of the impact point was 2.5 m which was 1.48 times the height of her body. Like other elite tennis players in the world, Li Na has her own tennis strokes and swing style

    Learning-based Predictive Control for Nonlinear Systems with Unknown Dynamics Subject to Safety Constraints

    Full text link
    Model predictive control (MPC) has been widely employed as an effective method for model-based constrained control. For systems with unknown dynamics, reinforcement learning (RL) and adaptive dynamic programming (ADP) have received notable attention to solve the adaptive optimal control problems. Recently, works on the use of RL in the framework of MPC have emerged, which can enhance the ability of MPC for data-driven control. However, the safety under state constraints and the closed-loop robustness are difficult to be verified due to approximation errors of RL with function approximation structures. Aiming at the above problem, we propose a data-driven robust MPC solution based on incremental RL, called data-driven robust learning-based predictive control (dr-LPC), for perturbed unknown nonlinear systems subject to safety constraints. A data-driven robust MPC (dr-MPC) is firstly formulated with a learned predictor. The incremental Dual Heuristic Programming (DHP) algorithm using an actor-critic architecture is then utilized to solve the online optimization problem of dr-MPC. In each prediction horizon, the actor and critic learn time-varying laws for approximating the optimal control policy and costate respectively, which is different from classical MPCs. The state and control constraints are enforced in the learning process via building a Hamilton-Jacobi-Bellman (HJB) equation and a regularized actor-critic learning structure using logarithmic barrier functions. The closed-loop robustness and safety of the dr-LPC are proven under function approximation errors. Simulation results on two control examples have been reported, which show that the dr-LPC can outperform the DHP and dr-MPC in terms of state regulation, and its average computational time is much smaller than that with the dr-MPC in both examples.Comment: The paper has been submitted at a IEEE Journal for possible publicatio

    The XRE Family Transcriptional Regulator SrtR in Streptococcus suis Is Involved in Oxidant Tolerance and Virulence

    Get PDF
    Streptococcus suis is a zoonotic pathogen that harbors anti-oxidative stress genes, which have been reported to be associated with virulence. Serial passage has been widely used to obtain phenotypic variant strains to investigate the functions of important genes. In the present study, S. suis serotype 9 strain DN13 was serially passaged in mice 30 times. The virulence of a single colony from passage 10 (SS9-P10) was found to increase by at least 140-fold as indicated by LD50 values, and the increased virulence was stable for single colonies from passage 20 (SS0-P20) and 30 (SS0-P30). Compared to the parental strain, the mouse-adapted strains were more tolerant to oxidative and high temperature stress. Genome-wide analysis of nucleotide variations found that reverse mutations occurred in seven genes, as indicated by BLAST analysis. Three of the reverse mutation genes or their homologs in other bacteria were reported to be virulence-associated, including ideSsuis in S. suis, a homolog of malR of Streptococcus pneumoniae, and a homolog of the prepilin peptidase-encoding gene in Legionella pneumophila. However, these genes were not involved in the stress response. Another gene, srtR (stress response transcriptional regulator), encoding an XRE family transcriptional regulator, which had an internal stop in the parental strain, was functionally restored in the adapted strains. Further analysis of DN13 and SS9-P10-background srtR-knock-out and complementing strains supported the contribution of this gene to stress tolerance in vitro and virulence in mice. srtR and its homologs are widely distributed in Gram-positive bacteria including several important human pathogens such as Enterococcus faecium and Clostridioides difficile, indicating similar functions in these bacteria. Taken together, our study identified the first member of the XRE family of transcriptional regulators that is involved in stress tolerance and virulence. It also provides insight into the mechanism of enhanced virulence after serial passage in experimental animals

    Nonlinear Magneto-Electro-Mechanical Response of Physical Cross-Linked Magneto-Electric Polymer Gel

    Get PDF
    This work reports on a novel magnetorheological polymer gel with carbon nanotubes and carbonyl iron particles mixed into the physical cross-linked polymer gel matrix. The resulting composites show unusual nonlinear magneto-electro-mechanical responses. Because of the low matrix viscosity, effective conductive paths formed by the CNTs were mobile and high-performance sensing characteristics were observed. In particular, due to the transient and mutable physical cross-linked bonds in the polymer gel, the electromechanical behavior acted in a rate-dependent manner. External stimulus at a high rate significantly enhanced the electrical resistance response during mechanical deformation. Meanwhile, the rheological properties were regulated by the external magnetic field when magnetic particles were added. This dual enhancement mechanism further contributes to the active control of electromechanical performance. These polymer composites could be adopted as electromechanical sensitive sensors to measure impact and vibration under different frequencies. There is great potential for this magnetorheological polymer gel in the application of intelligent vibration controls

    Effect of dietary arginine supplementation on reproductive performance of mice with porcine circovirus type 2 infection

    Get PDF
    The objective of this study was to investigate whether supplemental dietary arginine increases reproductive performance in mice infected with porcine circovirus type2 (PCV2). A total of 50KM female mice were allotted randomly to the arginine group (0.6% arginine + gestation diet) and control group (1.22% alanine + gestation diet). All the mice began to mate after 14 days of treatment with our prepared feed and challenged with PCV2 at the dose of 100 TCID50 (50% tissue culture infection dose, TCID50) after 7 days of pregnancy. Abortion rate, litter number, litter birth weight, the daily weight gain in the first 7 days and survival rate in the first 2 weeks of the neonates were calculated. The serum progesterone, estrogen, nitric oxide and superoxide dismutase (SOD) activity and total antioxidant capacity (T-AOC) on the 14th day of pregnancy were measured. Arginine supplementation decreased the abortion rate of pregnant mice and mortality of neonates caused by PCV2 infection. Further, litter number, litter birth weight and the daily weight gain of neonates increased in the arginine group compared to the control group. Arginine supplementation increased significantly the serum progesterone (P < 0.01) and nitric oxide levels (P < 0.05), but had little effect on the serum estrogen level. SOD activity and T-AOC in the arginine group were significantly higher (P < 0.01) than the control group. In conclusion, arginine supplementation partially reversed the reproductive failure in mice caused by PCV2 infection

    Simple quantitative measurement based on DWI to objectively judge DWI-FLAIR mismatch in a canine stroke model

    Get PDF
    PURPOSEDiffusion-weighted imaging (DWI) - fluid attenuated inversion recovery (FLAIR) mismatch was proven useful to time the onset of wake-up stroke; however, identifying the status of FLAIR imaging has been mostly subjective. We aimed to evaluate the value of relative DWI signal intensity (rDWI), and relative apparent diffusion coefficient (rADC) in identifying the FLAIR status in the acute period.METHODSAutologous clot was used to embolize left middle cerebral artery in 20 dogs. Magnetic resonance imaging was performed 3–6 hours and 24 hours after embolization. DWI-FLAIR mismatch was defined as hyperintense signal detected on DWI, but not on FLAIR. The mean values of rDWI or rADC of FLAIR- and FLAIR+ lesions were compared and the critical cutoff values of rDWI and rADC for identifying the FLAIR status were determined.RESULTSStroke models were successfully established in all animals. DWI+ lesions were found in all 20 dogs from three hours, while FLAIR+ lesions were found in three, 11, 16, 19, and 20 dogs at five time points after embolization, respectively. The mean rDWI values were significantly different between FLAIR- and FLAIR+ lesions (P < 0.001), but rADC values were not (P = 0.73). Using rDWI=1.90 as the threshold value, excellent diagnostic efficacy was achieved (AUC, 0.88; sensitivity, 0.77; specificity, 0.88). However, rADC appeared not useful (AUC, 0.48; sensitivity, 0.52; specificity, 0.58) in identifying the FLAIR status.CONCLUSIONIn our embolic canine stroke model, rDWI was useful to identify FLAIR imaging status in the acute period, while rADC was not

    Influence of medium modifications (optimization) on high nematicidal activity of the fermentation broth of Clostridium beijerinckii

    Get PDF
    Introduction: The nematode species Meloidogyne incognita has been responsible for significant financial losses within the agricultural sector. Nematophagous bacteria, characterised by their extensive distribution and broad spectrum of hosts, exhibit remarkable efficacy as natural antagonists against nematodes. Sneb518 (Clostridium beijerinckii) fermentation broth displayed substantial biocontrol activity against M. incognita in previous research. Optimizing fermentation conditions is a fundamental technique for dramatically enhancing end product performance. There has been no such study conducted yet on enhancing the nematicidal activities of Sneb518 (Clostridium beijerinckii) fermentation using response surface methodology (RSM).Methods: The influence of strain Sneb518 fermentation media and conditions on nematicidal activity was examined using the three-factor technique and a Plackett-Burman design, and the interaction between various fermentation factors was examined using a Box-Behnken design. The present study employed response surface methodology (RSM) to examine and enhance the nematicidal activity of Sneb518 culture filtrates by identifying and optimising the influential components.Results: Glucose, peanut cake flour, and potassium chloride as carbon, nitrogen, and inorganic salts displayed considerably increased nematicidal potential in the present study. Furthermore, the corrected mortality of J2 ranged from 52.24% to 91.15% when utilizing the Box-Behnken design. These findings clearly support the application of RSM for medium optimization. Moreover, the outcomes of the validation experiment corresponded to the model predictions.Discussion: This research has enhanced the biocontrol ability of C. beijerinckii to control M. incognita and this research has led to the advancement of new biocontrol agents

    Multifunctional Materials: A Case Study of the Effects of Metal Doping on ZnO Tetrapods with Bismuth and Tin Oxides

    Get PDF
    Hybrid metal oxide nano‐ and microstructures exhibit novel properties, which make them promising candidates for a wide range of applications, including gas sensing. In this work, the characteristics of the hybrid ZnO‐Bi2O3 and ZnO‐Zn2SnO4 tetrapod (T) networks are investigated in detail. The gas sensing studies reveal improved performance of the hybrid networks compared to pure ZnO‐T networks. For the ZnO‐T‐Bi2O3 networks, an enhancement in H2 gas response is obtained, although the observed p‐type sensing behavior is attributed to the formed junctions between the arms of ZnO‐T covered with Bi2O3 and the modulation of the regions where holes accumulate under exposure to H2 gas. In ZnO‐T‐Zn2SnO4 networks, a change in selectivity to CO gas with high response is noted. The devices based on individual ZnO‐T‐Bi2O3 and ZnO‐T‐Zn2SnO4 structures showed an enhanced H2 gas response, which is explained on the basis of interactions (electronic sensitization) between the ZnO‐T arm and Bi2O3 shell layer and single Schottky contact structure, respectively. Density functional theory‐based calculations provide mechanistic insights into the interaction of H2 and CO gas molecules with Bi‐ and Sn‐doped ZnO(0001) surfaces, revealing changes in the Fermi energies, as well as charge transfer between the molecules and surface species, which facilitate gas sensing
    corecore