67 research outputs found

    Advanced application of collagen-based biomaterials in tissue repair and restoration

    Get PDF
    AbstractIn tissue engineering, bioactive materials play an important role, providing structural support, cell regulation and establishing a suitable microenvironment to promote tissue regeneration. As the main component of extracellular matrix, collagen is an important natural bioactive material and it has been widely used in scientific research and clinical applications. Collagen is available from a wide range of animal origin, it can be produced by synthesis or through recombinant protein production systems. The use of pure collagen has inherent disadvantages in terms of physico-chemical properties. For this reason, a processed collagen in different ways can better match the specific requirements as biomaterial for tissue repair. Here, collagen may be used in bone/cartilage regeneration, skin regeneration, cardiovascular repair and other fields, by following different processing methods, including cross-linked collagen, complex, structured collagen, mineralized collagen, carrier and other forms, promoting the development of tissue engineering. This review summarizes a wide range of applications of collagen-based biomaterials and their recent progress in several tissue regeneration fields. Furthermore, the application prospect of bioactive materials based on collagen was outlooked, aiming at inspiring more new progress and advancements in tissue engineering research. Graphical Abstrac

    Continuous Fabrication and Assembly of Spatial Cell-Laden Fibers for a Tissue-Like Construct via a Photolithographic-Based Microfluidic Chip

    Get PDF
    Engineering three-dimensional (3D) scaffolds with in vivo like architecture and function has shown great potential for tissue regeneration. Here we developed a facile microfluidic-based strategy for the continuous fabrication of cell-laden microfibers with hierarchically organized architecture. We show that photolithographically fabricated microfluidic devices offer a simple and reliable way to create anatomically inspired complex structures. Furthermore, the use of photo-cross-linkable methacrylated alginate allows modulation of both the mechanical properties and biological activity of the hydrogels for targeted applications. Via this approach, multilayered hollow microfibers were continuously fabricated, which can be easily assembled in situ, using 3D printing, into a larger, tissue-like construct. Importantly, this biomimetic approach promoted the development of phenotypical functions of the target tissue. As a model to engineer a complex tissue construct, osteon-like fiber was biomimetically engineered, and enhanced vasculogenic and osteogenic expression were observed in the encapsulated human umbilical cord vein endothelial cells and osteoblast-like MG63 cells respectively within the osteon fibers. The capability of this approach to create functional building blocks will be advantageous for bottom-up regeneration of complex, large tissue defects and, more broadly, will benefit a variety of applications in tissue engineering and biomedical research

    Effects of Flotage on Immersion Indentation Results of Bone Tissue: An Investigation by Finite Element Analysis

    Get PDF
    In reality, nanoindentation test is an efficient technique for probing the mechanical properties of biological tissue that soaked in the liquid media to keep the bioactivity. However, the effects of flotage imposed on the indenter will lead to inaccuracy when calculating mechanical properties (for instance, elastic modulus and hardness) by using depth-sensing nanoindentation. In this paper, the effects of flotage on the nanoindentation results of cortical bone were investigated by finite element analysis (FEA) simulation. Comparisons of nanoindentation simulation results of bone samples with and without being soaked in the liquid media were carried out. Conclusions show that the difference of load-displacement curves in the case of soaking sample and without soaking sample conditions varies widely based on the change of indentation depth. In other words, the nanoindentation measurements in liquid media will cause significant error in the calculated Young’s modules and hardness due to the flotage. By taking into account the effect of flotage, these errors are particularly important to the accurate biomechanics characterization of biological samples

    Efficient Phytase Secretion and Phytate Degradation by Recombinant Bifidobacterium longum JCM 1217

    Get PDF
    Genetic engineering of probiotics, like bifidobacteria, may improve their microbial cell factory economy. This work designed a novel shuttle plasmid pBPES, which bears exogenous appA and is stable within Bifidobacterium longum JCM 1217. Cloning of three predicted promoters into pBPES proved that all of them drive appA expression in B. longum JCM 1217. Transformation of plasmids pBPES-tu and pBPES-groEL into B. longum JCM1217 resulted in much more phytase secretion suggests Ptu and PgroEL are strong promoters. Further in vitro and in vivo experiments suggested B. longum JCM 1217/pBPES-tu degrades phytate efficiently. In conclusion, the study screened two stronger promoters and constructed a recombinant live probiotic strain for effectively phytase secretion and phytate degradation in gut. The strategy used in the study provided a novel technique for improving the bioaccessibility of phytate and decreasing phosphorus excretion

    Data from: A lateral flow immunochromatographic strip test for rapid detection of hexoestrol in fish samples

    No full text
    A lateral flow immunochromatographic test strip was developed for on-site rapid and sensitive detection of Hexoestrol (HES) residues in fish samples with colloidal gold labeled the anti-HES monoclonal antibody (mAb). The strip is composed of a sample pad, a conjugate reagent pad, an absorbent pad, and a test membrane containing a control line and a test line. The sensitivity (half inhibitory concentration, IC50) of the strip in the detection of fish extract samples was confirmed to be 1.86 μg/kg, and the limit detection (LOD) value was 0.62 μg/kg. For intra-assay and inter-assay reproducibility, recoveries of HES spiked samples were ranged from 86.3% to 92.3% and 85.8% to 93.4%, coefficients of variation were 2.91-4.64% and 4.24-5.17% respectively. High-performance liquid chromatography (HPLC) was employed to confirm the performance of the strip. The strip test only took less than 10 minutes, and thus provides a repaid method for on-site detection of HES residues

    Analysis of Ice Phenology of Middle and Large Lakes on the Tibetan Plateau

    No full text
    Considered as a sensitive indicator of climate change, lake ice phenology can have significant influences on regional climate by affecting lake-atmosphere energy and water exchange. However, in situ measurements of ice phenology events are quite limited over high-elevation lakes on the Tibetan Plateau, where satellite monitoring can make up such deficiency. In this study, by a combination of AMSR-E (2002–2011) and AMSR-2 (2012–2021) passive microwave data, MODIS optimal products and in situ measurements of temperature profiles in four lakes, the ice phenology events of 40 high-elevation large lakes were derived and their inter-annual trends and influencing factors were analyzed. The freeze-up start date (FUS) mainly occurs in November-December with an average date of 9 December and the break-up end date (BUE) is concentrated in April-May with a multi-year average of 5 May. Under climate warming, 24 of the 34 (70.6%) lakes show delayed FUS at an average trend of 0.35 days/year, and 7 (20.6%) lakes show advanced BUE (rate of change CR = −0.17 days/year). The average ice coverage duration (ID) was 147 days, and 13 (38.2%) lakes shortened ID at an average rate of −0.33 days/year. By synthesizing other ice phenology products, we obtained the assembled products of lake ice phenology, and found that air temperature dominates during the freeze-thaw process, with a higher dependence of BUE than that of FUS on air temperature

    Investigation on the Material Removal and Surface Generation of a Single Crystal SiC Wafer by Ultrasonic Chemical Mechanical Polishing Combined with Ultrasonic Lapping

    No full text
    A new method of ultrasonic chemical mechanical polishing (CMP) combined with ultrasonic lapping is introduced to improve the machining performance of carbide silicon (SiC). To fulfill the method, an ultrasonic assisted machining apparatus is designed and manufactured. Comparative experiments with and without ultrasonic assisted vibration are conducted. According to the experimental results, the material removal rate (MRR) and surface generation are investigated. The results show that both ultrasonic lapping and ultrasonic CMP can decrease the two-body abrasion and reduce the peak-to-valley (PV) value of surface roughness, the effect of ultrasonic in lapping can contribute to the higher MRR and better surface quality for the following CMP. The ultrasonic assisted vibration in CMP can promote the chemical reaction, increase the MRR and improve the surface quality. The combined ultrasonic CMP with ultrasonic lapping achieved the highest MRR of 1.057 μm/h and lowest PV value of 0.474 μm. Therefore this sequent ultrasonic assisted processing method can be used to improve the material removal rate and surface roughness for the single crystal SiC wafer

    Batch Production of Wafer-Scale Monolayer MoS<sub>2</sub>

    No full text
    Monolayer MoS2 has emerged as a highly promising candidate for next-generation electronics. However, the production of monolayer MoS2 with a high yield and low cost remains a challenge that impedes its practical application. Here, a significant breakthrough in the batch production of wafer-scale monolayer MoS2 via chemical vapor deposition is reported. Notably, a single preparation process enables the growth of multiple wafers simultaneously. The homogeneity and cleanliness of the entire wafer, as well as the consistency of different wafers within a batch, are demonstrated via morphology characterizations and spectroscopic measurements. Field-effect transistors fabricated using the grown MoS2 exhibit excellent electrical performances, confirming the high quality of the films obtained via this novel batch production method. Additionally, we successfully demonstrate the batch production of wafer-scale oxygen-doped MoS2 films via in situ oxygen doping. This work establishes a pathway towards mass preparation of two-dimensional materials and accelerates their development for diverse applications

    Simulating Forest Fire Spread with Cellular Automation Driven by a LSTM Based Speed Model

    No full text
    The simulation of forest fire spread is a key problem for the management of fire, and Cellular Automata (CA) has been used to simulate the complex mechanism of the fire spread for a long time. The simulation of CA is driven by the rate of fire spread (ROS), which is hard to estimate, because some input parameters of the current ROS model cannot be provided with a high precision, so the CA approach has not been well applied yet in the forest fire management system to date. The forest fire spread simulation model LSTM-CA using CA with LSTM is proposed in this paper. Based on the interaction between wind and fire, S-LSTM is proposed, which takes full advantage of the time dependency of the ROS. The ROS estimated by the S-LSTM is satisfactory, even though the input parameters are not perfect. Fifteen kinds of ROS models with the same structure are trained for different cases of slope direction and wind direction, and the model with the closest case is selected to drive the transmission between the adjacent cells. In order to simulate the actual spread of forest fire, the LSTM-based models are trained based on the data captured, and three correction rules are added to the CA model. Finally, the prediction accuracy of forest fire spread is verified though the KAPPA coefficient, Hausdorff distance, and horizontal comparison experiments based on remote sensing images of wildfires. The LSTM-CA model has good practicality in simulating the spread of forest fires
    • …
    corecore