34 research outputs found

    Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury

    Get PDF
    Acute kidney injury (AKI) is one of the most relevant health issues, leading to millions of deaths. The magnitude of the phenomenon remarks the urgent need for innovative and effective therapeutic approaches. Cell-based therapy with renal progenitor cells (RPCs) has been proposed as a possible strategy. Studies have shown the feasibility of directing embryonic stem cells or induced Pluripotent Stem Cells (iPSCs) towards nephrogenic intermediate mesoderm and metanephric mesenchyme (MM). However, the functional activity of iPSC-derived RPCs has not been tested in animal models of kidney disease. Here, through an efficient inductive protocol, we directed human iPSCs towards RPCs that robustly engrafted into damaged tubuli and restored renal function and structure in cisplatin-mice with AKI. These results demonstrate that iPSCs are a valuable source of engraftable cells with regenerative activity for kidney disease and create the basis for future applications in stem cell-based therapy

    Current Bioengineering and Regenerative Strategies for the Generation of Kidney Grafts on Demand

    Full text link
    [EN] Currently in the USA, one name is added to the organ transplant waiting list every 15 min. As this list grows rapidly, fewer than one-third of waiting patients can receive matched organs from donors. Unfortunately, many patients who require a transplant have to wait for long periods of time, and many of them die before receiving the desired organ. In the USA alone, over 100,000 patients are waiting for a kidney transplant. However, it is a problem that affects around 6% of the word population. Therefore, seeking alternative solutions to this problem is an urgent work. Here, we review the current promising regenerative technologies for kidney function replacement. Despite many approaches being applied in the different ways outlined in this work, obtaining an organ capable of performing complex functions such as osmoregulation, excretion or hormone synthesis is still a long-term goal. However, in the future, the efforts in these areas may eliminate the long waiting list for kidney transplants, providing a definitive solution for patients with end-stage renal disease.This study was supported by a grant from ALCER-TURIA, ASTELLAS and PRECIPITA CROWDFUNDING.Garcia-Dominguez, X.; Vicente Antón, JS.; Vera Donoso, CD.; Marco-Jiménez, F. (2017). Current Bioengineering and Regenerative Strategies for the Generation of Kidney Grafts on Demand. Current Urology Reports. 18(1):1-8. https://doi.org/10.1007/s11934-017-0650-6S18181Ott HC, Mathisen DJ. Bioartificial tissues and organs: are we ready to translate? Lancet. 2011;378:1977–8.Salvatori M, Peloso A, Katari R, Orlando G. Regeneration and bioengineering of the kidney: current status and future challenges. Curr Urol Rep. 2014;15:379.D’Agati VD. Growing new kidneys from embryonic cell suspensions: fantasy or reality? J Am Soc Nephrol. 2002;11:1763–6.Abouna GM. Organ shortage crisis: problems and possible solutions. Transplant Proc. 2008;40:34–8.Ozbolat IT, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng. 2013;60:691–9.Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng. 2011;13:27–53.Meeus F, Kourilsky O, Guerin AP, Gaudry C, Marchais SJ, London GM. Pathophysiology of cardiovascular disease in hemodialysis patients. Kidney Int Suppl. 2000;76:140–7.Jofré R. Factores que afectan a la calidad de vida en pacientes en prediálisis, diálisis y trasplante renal. Nefrologia. 1999;19:84–90.Villa G, Rodríguez-Carmona A, Fernández-Ortiz L, Cuervo J, Rebollo P, Otero A, et al. Cost analysis of the Spanish renal replacement therapy programme. Nephrol Dial Transplant. 2011;26:3709–14.MJ C, Marshall D, Dilworth M, Bottomley M, Ashton N, Brenchley P. Immunosuppression is essential for successful allogeneic transplantation of the metanephroi. Transplantation. 2009;88:151–9.Xinaris C, Yokoo T. Reforming the kidney starting from a single-cell suspension. Nephron Exp Nephrol. 2014;126:107.Nguyen DM, El-Serag HB. The epidemiology of obesity. Gastroenterol Clin N Am. 2010;39:1–7.Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med. 2013;19:646–51.Hariharan K, Kurtz A, Schmidt-Ott KM. Assembling kidney tissues from cells: the long road from organoids to organs. Front Cell Dev Biol. 2015;3:70.Montserrat N, Garreta E, Izpisua Belmonte JC. Regenerative strategies for kidney engineering, FEBS J. 2016; in press. doi: 10.1111/febs.13704 .Hammerman MR. Transplantation of renal primordia: renal organogenesis. Pediatr Nephrol. 2007;22:1991–8.Basma H, Soto-Gutiérrez A, Yannam GR, Liu L, Ito R, Yamamoto T, et al. Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology. 2009;136:990–9.Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27:275–80.Takahashi T, Lord B, Schulze PC, Fryer RM, Sarang SS, Gullans SR, et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation. 2003;107:1912–6.Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res. 2009;19:429–38.Ledran MH, Krassowska A, Armstrong L, Dimmick I, Renström J, Lang R, et al. Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell. 2008;3:85–98.Yamanaka S, Yokoo T. Current bioengineering methods for whole kidney regeneration. Stem Cells Int. 2015;2015:724047.Xia Y, Nivet E, Sancho-Martinez I, Gallegos T, Suzuki K, Okamura D, et al. Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat Cell Biol. 2013;15:1507–15.Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell. 2014;14:53–67.Simerman AA, Dumesic DA, Chazenbalk GD. Pluripotent muse cells derived from human adipose tissue: a new perspective on regenerative medicine and cell therapy. Clin Transl Med. 2014;3:12.Verdi J, Tan A, Shoae-Hassani A, Seifalian AM. Endometrial stem cells in regenerative medicine. J Biol Eng. 2014;8:20.Maeshima A, Yamashita S, Nojima Y. Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J Am Soc Nephrol. 2003;14:3138–46.Sagrinati C, Netti GS, Mazzinghi B, Lazzeri E, Liotta F, Frosali F, et al. Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J Am Soc Nephrol. 2006;17:2443–56.Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q. The renal papilla is a niche for adult kidney stem cells. J Clin Invest. 2004;114:795–804.Kitamura S, Yamasaki Y, Kinomura M, Sugaya T, Sugiyama H, Maeshima Y, et al. Establishment and characterization of renal progenitor like cells from S3 segment of nephron in rat adult kidney. FASEB J. 2005;19:1789–97.Kitamura S, Sakurai H, Makino H. Single adult kidney stem/progenitor cells reconstitute three-dimensional nephron structures in vitro. Stem Cells. 2015;33:774–84.Li M, Suzuki K, Kim NY, Liu GH, Izpisua Belmonte JC. A cut above the rest: targeted genome editing technologies in human pluripotent stem cells. J Biol Chem. 2014;289:4594–9.Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R, Agrawal V, et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun. 2015;6:8715.Hu J, Lei Y, Wong WK, Liu S, Lee KC, He X, et al. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Res. 2014;42:4375–90.Den Hartogh SC, Schreurs C, Monshouwer-Kloots JJ, Davis RP, Elliott DA, Mummery CL, et al. Dual reporter MESP1 mCherry/w-NKX2-5 eGFP/w hESCs enable studying early human cardiac differentiation. Stem Cells. 2015;33:56–67.Fukui A, Yokoo T. Kidney regeneration using developing xenoembryo. Curr Opin Organ Transplant. 2015;20:160–4.Chen J, Lansford R, Stewart V, Young F, Alt FW. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc Natl Acad Sci U S A. 1993;90:4528–32.Ueno H, Turnbull BB, Weissman IL. Two-step oligoclonal development of male germ cells. Proc Natl Acad Sci U S A. 2009;106:175–80.Fraidenraich D, Stillwell E, Romero E, Wilkes D, Manova K, Basson CT, et al. Rescue of cardiac defects in id knockout embryos by injection of embryonic stem cells. Science. 2004;306:247–52.Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell. 2010;142:787–99.Matsunari H, Nagashima H, Watanabe M, Umeyama K, Nakano K, Nagaya M, et al. Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs. Proc Natl Acad Sci U S A. 2013;110:4557–62.Espejel S, Roll GR, McLaughlin KJ, Lee AY, Zhang JY, Laird DJ, et al. Induced pluripotent stem cell-derived hepatocytes have the functional and proliferative capabilities needed for liver regeneration in mice. J Clin Invest. 2010;120:3120–6.Usui J, Kobayashi T, Yamaguchi T, Knisely AS, Nishinakamura R, Nakauchi H. Generation of kidney from pluripotent stem cells via blastocyst complementation. Am J Pathol. 2012;180:2417–26.Aggarwal S, Moggio A, Bussolati B. Concise review: stem/progenitor cells for renal tissue repair: current knowledge and perspectives. Stem Cells Transl Med. 2013;2:1011–9.Yokote S, Yokoo T. Organogenesis for kidney regeneration. Curr Opin Organ Transplant. 2013;18:186–90.Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–43.Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng. 2011;2:403–30.Badylak SF. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol. 2004;12:367–77.Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials. 2007;28:3587–93.Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14:213–21.Yokoo T. Kidney regeneration with stem cells: an overview. Nephron Exp Nephrol. 2014;126(2):54.Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16:814–20.Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med. 2010;16:927–33.Montserrat N, Garreta E, Izpisua Belmonte JC. Regenerative strategies for kidney engineering. FEBS J. 2016. doi: 10.1111/febs.13704 .Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–85.Groll J, Boland T, Blunk T, Burdick JA, Cho DW, Dalton PD, et al. Biofabrication: reappraising the definition of an evolving field. Biofabrication. 2016;8:013001.Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34:422–34.Uzarski JS, Xia Y, Belmonte JC, Wertheim JA. New strategies in kidney regeneration and tissue engineering. Curr Opin Nephrol Hypertens. 2014;23:399–405.Humes HD, Buffington DA, MacKay SM, Funke AJ, Weitzel WF. Replacement of renal function in uremic animals with a tissue-engineered kidney. Nat Biotechnol. 1999;17:451–5.Chevtchik NV, Fedecostante M, Jansen J, Mihajlovic M, Wilmer M, Rüth M, Masereeuw R, Stamatialis D. Upscaling of a living membrane for bioartificial kidney device. Eur J Pharmacol. 2016.Humes HD, Sobota JT, Ding F, Song JH. A selective cytopheretic inhibitory device to treat the immunological dysregulation of acute and chronic renal failure. Blood Purif. 2010;29:183–90.Tumlin J, Wali R, Williams W, Murray P, Tolwani AJ, Vinnikova AK, et al. Efficacy and safety of renal tubule cell therapy for acute renal failure. J Am Soc Nephrol. 2008;19:1034–40.Yokoo T, Ohashi T, Shen JS, Sakurai K, Miyazaki Y, Utsunomiya Y, et al. Human mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to contribute to kidney tissues. Proc Natl Acad Sci U S A. 2005;102(9):3296–300.Yokoo T, Fukui A, Ohashi T, Miyazaki Y, Utsunomiya Y, Kawamura T, et al. Xenobiotic kidney organogenesis from human mesenchymal stem cells using a growing rodent embryo. J Am Soc Nephrol. 2006;17:1026–34.Cooper DK. A brief history of cross-species organ transplantation. Proc (Bayl Univ Med Cent). 2012;25:49–57.Costa MR, Fischer N, Gulich B, Tönjes RR. Comparison of porcine endogenous retroviruses infectious potential in supernatants of producer cells and in cocultures. Xenotransplantation. 2014;21:162–73.Takeda S, Rogers SA, Hammerman MR. Differential origin for endothelial and mesangial cells after transplantation of pig fetal renal primordia into rats. Transpl Immunol. 2006;15:211–5.Yasutomi Y. Establishment of specific pathogen-free macaque colonies in Tsukuba Primate Research Center of Japan for AIDS research. Vaccine. 2010;28:75–7.Dekel B, Burakova T, Arditti FD, Reich-Zeliger S, Milstein O, Aviel-Ronen S, et al. Human and porcine early kidney precursors as a new source for transplantation. Nat Med. 2003;9:53–60.Hammerman MR. Classic and current opinion in embryonic organ transplantation. Curr Opin Organ Transplant. 2014;19:133–9.Rogers SA, Hammerman MR. Prolongation of life in anephric rats following de novo renal organogenesis. Organogenesis. 2004;1:22–5.•• Yokote S, Matsunari H, Iwai S, Yamanaka S, Uchikura A, Fujimoto E, et al. Urine excretion strategy for stem cell-generated embryonic kidneys. Proc Natl Acad Sci U S A. 2015;112:12980–5. This manuscript describes the developed-metanephros ability to produce urine when it was connected to the excretory system of the recipient organism. They demonstrated the potential of this technique as a possible solution to the kidneys shortage.Yokote S, Yokoo T, Matsumoto K, Utsunomiya Y, Kawamura T, Hosoya T. The effect of metanephroi transplantation on blood pressure in anephric rats with induced acute hypotension. Nephrol Dial Transplant. 2012;27:3449–55.Matsumoto K, Yokoo T, Yokote S, Utsunomiya Y, Ohashi T, Hosoya T. Functional development of a transplanted embryonic kidney: effect of transplantation site. J Nephrol. 2012;25:50–5.Yokote S, Yokoo T, Matsumoto K, Ohkido I, Utsunomiya Y, Kawamura T, et al. Metanephroi transplantation inhibits the progression of vascular calcification in rats with adenine-induced renal failure. Nephron Exp Nephrol. 2012;120:e32–40.Matsumoto K, Yokoo T, Matsunari H, Iwai S, Yokote S, Teratani T, et al. Xeno‐transplanted embryonic kidney provides a niche for endogenous mesenchymal stem cell differentiation into erythropoietin-producing tissue. Stem Cells. 2012;30:1228–35.Abrahamson DR. Glomerular development in intraocular and intrarenal graft of fetal kidney. Lab Investig. 1991;64:629–39.Woolf AS, Palmer SJ, Snow ML, Fine LG. Creation of functioning chimeric mammalian kidney. Kidney Int. 1990;38:991–7.Robert B, St John PL, Hyink DP, Abrahamson DR. Evidence that embryonic kidney cells expressing flk-1 are intrinsic, vasculogenic angioblasts. Am J Physiol. 1996;271:F744–53.Koseki C, Herzlinger D, Al-Awqati Q. Integration of embryonic nephrogenic cells carrying a reporter gene into functioning nephrons. Am J Physiol. 1991;261:C550–4.Rogers SA, Lowell JA, Hammerman NA, Hammerman MR. Transplantation of developing metanephroi into adult rats. Kidney Int. 1998;54:27–37.Barakat TL, Harrison RG. The capacity of fetal and neonatal renal tissues to regenerate and differentiate in a heterotropic allogenic subcutaneous tissue site in the rat. J Anat. 1971;110:393–407.Rogers SA, Liapis H, Hammerman MR. Transplantation of metanephroi across the major histocompatibility complex in rats. Am J Physiol Regul Integr Comp Physiol. 2001;280:R132–6.Vera-Donoso CD, García-Dominguez X, Jiménez-Trigos E, García-Valero L, Vicente JS, Marco-Jiménez F. Laparoscopic transplantation of metanephroi: a first step to kidney xenotransplantation. Actas Urol Esp. 2015;39:527–34.•• Marco-Jiménez F, Garcia-Dominguez X, Jimenez-Trigos E, Vera-Donoso CD, Vicente JS. Vitrification of kidney precursors as a new source for organ transplantation. Cryobiology. 2015;70:278–82. This study found that it is possible to create a long-term biobank of kidney precursors as an unlimited source of organs for transplantation and open new therapeutic possibilities for the patients with chronic renal failure.Garcia-Dominguez X, Vicente JS, Vera-Donoso C, Jimenez-Trigos E, Marco-Jiménez F. First steps towards organ banks: vitrification of renal primordia. CryoLetters. 2016;37:47–52.•• García-Domínguez X, Vera-Donoso CD, García-Valero L, Vicente JS, Marco-Jiménez F. Embryonic organ transplantation: the new era of xenotransplantation. In: Abdeldayem H, El-Kased AF, El-Shaarawy A, editors. Frontiers in transplantology. 2016. pp. 26–46. This manuscript describes for the first time the protocol for transplantation of embryonic kidneys as an organ replacement therapy using laparoscopic surgery.Bottomley MJ, Baicu S, Boggs JM, Marshall DP, Clancy M, Brockbank KG, et al. Preservation of embryonic kidneys for transplantation. Transplant Proc. 2005;37:280–4.Hara J, Tottori J, Anders M, Dadhwal S, Asuri P, Mobed-Miremadi M. Trehalose effectiveness as a cryoprotectant in 2D and 3D cell cultures of human embryonic kidney cells. Artif Cells Nanomed Biotechnol. 2016. doi: 10.3109/21691401.2016.1167698 .Xu Y, Zhao G, Zhou X, Ding W, Shu Z, Gao D. Biotransport and intracellular ice formation phenomena in freezing human embryonic kidney cells (HEK293T). Cryobiology. 2014;68:294–302

    Transport of organic anions and cations in murine embryonic kidney development and in serially-reaggregated engineered kidneys

    Get PDF
    Recent advances in renal tissue engineering have shown that dissociated, early renogenic tissue from the developing embryo can self-assemble into morphologically accurate kidney-like organs arranged around a central collecting duct tree. In order for such self-assembled kidneys to be useful therapeutically or as models for drug screening, it is necessary to demonstrate that they are functional. One of the main functional characteristics of mature kidneys is transport of organic anions and cations into and out of the proximal tubule. Here, we show that the transport function of embryonic kidneys allowed to develop in culture follows a developmental time-course that is comparable to embryonic kidney development in vivo. We also demonstrate that serially-reaggregated engineered kidneys can transport organic anions and cations through specific uptake and efflux channels. These results support the physiological relevance of kidneys grown in culture, a commonly used model for kidney development and research, and suggest that serially-reaggregated kidneys self-assembled from separated cells have some functional characteristics of intact kidneys

    Engineering kidneys from simple cell suspensions:an exercise in self-organization

    Get PDF
    Increasing numbers of people approaching and living with end-stage renal disease and failure of the supply of transplantable kidneys to keep pace has created an urgent need for alternative sources of new organs. One possibility is tissue engineering of new organs from stem cells. Adult kidneys are arguably too large and anatomically complex for direct construction, but engineering immature kidneys, transplanting them, and allowing them to mature within the host may be more feasible. In this review, we describe a technique that begins with a suspension of renogenic stem cells and promotes these cells’ self-organization into organ rudiments very similar to foetal kidneys, with a collecting duct tree, nephrons, corticomedullary zonation and extended loops of Henle. The engineered rudiments vascularize when transplanted to appropriate vessel-rich sites in bird eggs or adult animals, and show preliminary evidence for physiological function. We hope that this approach might one day be the basis of a clinically useful technique for renal replacement therapy

    Guided self-organization and cortical plate formation in human brain organoids.

    Get PDF
    Three-dimensional cell culture models have either relied on the self-organizing properties of mammalian cells or used bioengineered constructs to arrange cells in an organ-like configuration. While self-organizing organoids excel at recapitulating early developmental events, bioengineered constructs reproducibly generate desired tissue architectures. Here, we combine these two approaches to reproducibly generate human forebrain tissue while maintaining its self-organizing capacity. We use poly(lactide-co-glycolide) copolymer (PLGA) fiber microfilaments as a floating scaffold to generate elongated embryoid bodies. Microfilament-engineered cerebral organoids (enCORs) display enhanced neuroectoderm formation and improved cortical development. Furthermore, reconstitution of the basement membrane leads to characteristic cortical tissue architecture, including formation of a polarized cortical plate and radial units. Thus, enCORs model the distinctive radial organization of the cerebral cortex and allow for the study of neuronal migration. Our data demonstrate that combining 3D cell culture with bioengineering can increase reproducibility and improve tissue architecture

    iPS, organoids and 3D models as advanced tools for in vitro toxicology

    Get PDF
    Recent progress in the field of in vitro toxicology has led to the development of increasingly complex models that are closer to the complexity of organs and tissues, both in terms of structure and functionality, and are characterized by more precise, specif- ic and early endpoints (Ranga et al., 2014; Xinaris et al., 2015; Clevers, 2016; Jackson and Lu, 2016; Bartfeld and Clevers, 2017; Pamies et al., 2018; Truskey, 2018). The transition from traditional 2D models to three-dimensional (3D) systems cer- tainly represents the most important innovation of the last de- cades. Numerous studies now employ 3D systems, spheroids and organoids, also based on pluripotent stem cells, for the study of drug toxicity. However, the still high cost of these systems limits their use in xenobiotic screening and environmental tox- icology (Kolaja, 2014; Gómez-Lechón and Tolosa, 2016; Luz and Tokar, 2018; Lynch et al., 2019)

    Enhanced tolerance of the rat myocardium to ischemia and reperfusion injury earlyafter acute myocardial infarction

    No full text
    It is now recognized that changes occurring during cardiac remodelingmay influence the tolerance of the myocardium to ischemic stress. Therefore, the present study investigated the response of the post-infarcted heart to ischemia in an experimental model of ischemia and reperfusion injury and the possible underlying mechanisms. Acute myocardial infarction (AMI) was induced in Wistar male rats by ligating the left coronary artery (AMI, n = 13), while sham-operated rats were used as controls (SHAM, n = 11). At 2 weeks, cardiac dysfunction was observed in AMI, as indicated by the reduction of the left ventricular EF%. Isolated hearts were then subjected to 30 min of zero-flow global ischemia followed by 45 min of reperfusion. Ischemic contracture was significantly depressed in AMI hearts. Postischemicleft ventricular end diastolic pressure (LVEDP45) in mmHg and LDH release in IU/g were markedly decreased; LVEDP45 was 52.1 (7.5) for AMI vs 96.6 (7.5),P < 0.05 and LDH release was 7.5 (1.0) in AMI vs 11.4 (0.56)in SHAM, P < 0.05. This response was associated with 2-fold increase in HSP70 expression in AMI hearts (noninfarcted segment), P < 0.05 vs SHAM and 1.7 fold increase in the expression of the phospho-HSP27, P < 0.05, while the expression of PKCε was shown to be 1.4-fold less in AMI, P < 0.05. In conclusion,the post-infarcted heart seems to be resistant to ischemiareperfusion injury and heat shock protein 70 and 27 may be involved in this response. © Steinkopff-Verlag 2007

    Propylthiouracil-induced hypothyroidism is associated with increased tolerance of the isolated rat heart to ischaemia-reperfusion

    No full text
    The present study investigated the response of the hypothyroid heart to ischaemia-reperfusion. Hypothyroidism was induced in Wistar rats by oral administration of propylthiouracil (0.05%) for 3 weeks (HYPO rats), while normal animals (NORM) served as controls. Isolated hearts from NORM and HYPO animals were perfused in Langendorff mode and subjected to zero-flow global ischaemia followed by reperfusion (I/R). Post-ischaemic recovery of left ventricular developed pressure was expressed as % of the initial value (LVDP%). Basal expression of protein kinase C epsilon (PKCepsilon) and PKCdelta and phosphorylation of p46 and p54 c-jun NH2-terminal kinases (JNKs) in response to I/R, were assessed by Western blotting. LVDP% was found to be significantly higher in HYPO hearts than in NORM. At baseline, PKCepsilon expression was 1.4-fold more in HYPO than in NORM hearts, P<0.05, while PKCdelta was not changed. Furthermore, basal phospho-p54 and -p46 JNK levels were 2.2- and 2.6-fold more in HYPO than in NORM hearts, P<0.05. In response to I/R, in NORM hearts, phospho-p54 and -p46 JNK levels were 5.5- and 6.0-fold more as compared with the baseline values, P<0.05, while they were not significantly altered in HYPO hearts. HYPO hearts seem to display a phenotype of cardioprotection against ischaemia-reperfusion and this is associated with basal PKCepsilon overexpression and attenuated JNK activation after I/R

    Direct Reprogramming of Human Bone Marrow Stromal Cells into Functional Renal Cells Using Cell-free Extracts

    Get PDF
    The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs), also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes—formation of “domes” and tubule-like structures—and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy
    corecore