4,762 research outputs found

    Quantum Phase Transition in Hall Conductivity on an Anisotropic Kagome Lattice

    Full text link
    We study the quantum Hall effect(QHE) on the Kagom\'{e} lattice with anisotropy in one of the hopping integrals. We find a new type of QHE characterized by the quantization rules for Hall conductivity σxy=2ne2/h\sigma_{xy}=2ne^{2}/h and Landau Levels E(n)=±vF(n+1/2)BeE(n)=\pm v_{F}\sqrt{(n+1/2)\hbar Be} (nn is an integer), which is different from any known type. This phase evolves from the QHE phase with σxy=4(n+1/2)e2/h\sigma_{xy}=4(n+1/2)e^{2}/h and E(n)=±vF2nBeE(n)=\pm v_{F}\sqrt{2n\hbar Be} in the isotropic case, which is realized in a system with massless Dirac fermions (such as in graphene). The phase transition does not occur simultaneously in all Hall plateaus as usual but in sequence from low to high energies, with the increase of hopping anisotropy.Comment: 5 pages, 4 figure

    Kinetic Ballooning Mode Under Steep Gradient: High Order Eigenstates and Mode Structure Parity Transition

    Get PDF
    The existence of kinetic ballooning mode (KBM) high order (non-ground) eigenstates for tokamak plasmas with steep gradient is demonstrated via gyrokinetic electromagnetic eigenvalue solutions, which reveals that eigenmode parity transition is an intrinsic property of electromagnetic plasmas. The eigenstates with quantum number l=0l=0 for ground state and l=1,2,3l=1,2,3\ldots for non-ground states are found to coexist and the most unstable one can be the high order states (l0l\neq0). The conventional KBM is the l=0l=0 state. It is shown that the l=1l=1 KBM has the same mode structure parity as the micro-tearing mode (MTM). In contrast to the MTM, the l=1l=1 KBM can be driven by pressure gradient even without collisions and electron temperature gradient. The relevance between various eigenstates of KBM under steep gradient and edge plasma physics is discussed.Comment: 6 pages, 6 figure

    SU(5) Symmetry of spdfg Interacting Boson Model

    Get PDF
    The extended interacting boson model with s-, p-, d-, f- and g-bosons being included (spdfg IBM) are investigated. The algebraic structure including the generators, the Casimir operators of the groups at the SU(5) dynamical symmetry and the branching rules of the irreducible representation reductions along the group chain are obtained. The typical energy spectrum of the Symmetry is given.Comment: 12 pages, 2 figure

    Yizhi decoction as a therapy for vascular dementia: A metaanalysis

    Get PDF
    Purpose: Vascular dementia (VD) constitutes a heavy burden in health care systems in ageing societies. This review was aimed at assessing the effectiveness of Yizhi decoction against VD.Methods: Five computerized databases were searched. A total of 262 publications were retrieved. Jadad evaluation was used to analyze the quality of the literature. Random methods, random allocation concealment and blinding, withdrawal, exiting and other aspects were included. RevMan 5.3 was used for meta-analysis.Results: There were 1045 patients, consisting of 527 cases in the treatment group (Yizhi decoction group) and 518 cases in the control group. Risk ratio revealed that Yizhi decoction was significantly effective against VD, while the weighted by mean difference demonstrated that Yizhi decoction improved the MMSE score of patients.Conclusion: Yizhi decoction improves the quality of daily life and mental state in VD patients. However, more rigorous and scientific case studies are still needed for further confirmation to strengthen and support these findings.Keywords: Vascular dementia, Yizhi decoction, Meta-analysi

    A multi-sensor based online tool condition monitoring system for milling process

    Get PDF
    Tool condition monitoring has been considered as one of the key enabling technologies for manufacturing optimization. Due to the high cost and limited system openness, the relevant developed systems have not been widely adopted by industries, especially Small and Medium-sized Enterprises. In this research, a cost-effective, wireless communication enabled, multi-sensor based tool condition monitoring system has been developed. Various sensor data, such as vibration, cutting force and power data, as well as actual machining parameters, have been collected to support efficient tool condition monitoring and life estimation. The effectiveness of the developed system has been validated via machining cases. The system can be extended to wide manufacturing applications
    corecore