75 research outputs found

    SCSC: Spatial Cross-scale Convolution Module to Strengthen both CNNs and Transformers

    Full text link
    This paper presents a module, Spatial Cross-scale Convolution (SCSC), which is verified to be effective in improving both CNNs and Transformers. Nowadays, CNNs and Transformers have been successful in a variety of tasks. Especially for Transformers, increasing works achieve state-of-the-art performance in the computer vision community. Therefore, researchers start to explore the mechanism of those architectures. Large receptive fields, sparse connections, weight sharing, and dynamic weight have been considered keys to designing effective base models. However, there are still some issues to be addressed: large dense kernels and self-attention are inefficient, and large receptive fields make it hard to capture local features. Inspired by the above analyses and to solve the mentioned problems, in this paper, we design a general module taking in these design keys to enhance both CNNs and Transformers. SCSC introduces an efficient spatial cross-scale encoder and spatial embed module to capture assorted features in one layer. On the face recognition task, FaceResNet with SCSC can improve 2.7% with 68% fewer FLOPs and 79% fewer parameters. On the ImageNet classification task, Swin Transformer with SCSC can achieve even better performance with 22% fewer FLOPs, and ResNet with CSCS can improve 5.3% with similar complexity. Furthermore, a traditional network (e.g., ResNet) embedded with SCSC can match Swin Transformer's performance.Comment: ICCV2023 Workshop (New Ideas in Vision Transformers

    In vitro anticancer activity of acetylshikonin action against cervical cancer

    Get PDF
    Cervical cancer is a malignant neoplasm and is the second commonest cancer in women worldwide. Despite the availability of various treatment modalities, the 5-year survival remains poor. Therefore, it is absolutely necessary to explore drugs capable of preventing and treating cervical cancer. Plant-derived natural products are widely used as adjunct to chemotherapy for this type of cancer. Our study aims to investigate the effects of acetylshikonin, an acetyl derivative, isolated from a Chinese medicinal herb Lithospermum erythrorhizon Sieb. et Zucc., a folk medicine with a long history of safe use for clinically treating cervical cancer in China. MTT assay was used to determine the in vitro anticancer effects of acetylshikonin on human cervical cancer Siha cells. The expression of caspase-3 and -8 proteins were determined. Flow cytometry and quantitative RT-PCR were performed to detect the expression level of Siha cells associated markers and regulatory genes. In Siha cell lines, acetylshikonin inhibited cell growth in a dose-dependent manner. The preferential expression of Siha cells related marker, regulatory genes were also highlighted. It arrested the cell cycle by blocking transition from S phase to G2/M phase and induced apoptosis of Siha cell through activating caspase-3 and caspase-8. In the current study, acetylshikonin can be taken as a promising natural lead for cervical cancer

    SnS2/g-C3N4/graphite nanocomposites as durable lithium-ion battery anode with high pseudocapacitance contribution

    Get PDF
    Altres ajuts: the CERCA Programme /Generalitat de Catalunya. Part of the present work has been performed in the framework of Universitat Autònoma de Barcelona Materials Science PhD program.Tin disulfide is a promising anode material for Li-ion batteries (LIB) owing to its high theoretical capacity and the abundance of its composing elements. However, bare SnS suffers from low electrical conductivity and large volume expansion, which results in poor rate performance and cycling stability. Herein, we present a solution-based strategy to grow SnS nanostructures within a matrix of porous g-CN (CN) and high electrical conductivity graphite plates (GPs). We test the resulting nanocomposite as anode in LIBs. First, SnS nanostructures with different geometries are tested, to find out that thin SnS nanoplates (SnS-NPLs) provide the highest performances. Such SnS-NPLs, incorporated into hierarchical SnS/CN/GP nanocomposites, display excellent rate capabilities (536.5 mA h g at 2.0 A g) and an outstanding stability (∼99.7% retention after 400 cycles), which are partially associated with a high pseudocapacitance contribution (88.8% at 1.0 mV s). The excellent electrochemical properties of these nanocomposites are ascribed to the synergy created between the three nanocomposite components: i) thin SnS-NPLs provide a large surface for rapid Li-ion intercalation and a proper geometry to stand volume expansions during lithiation/delithiation cycles; ii) porous CN prevents SnS-NPLs aggregation, habilitates efficient channels for Li-ion diffusion and buffer stresses associated to SnS volume changes; and iii) conductive GPs allow an efficient charge transport

    Printability and Applicability of 3D Printing System Loaded with Chlorogenic Acid Hydrogel

    Get PDF
    Three-dimensional food printing (3DFP) is an efficient way of food processing in line with the future lifestyle. As a delivery system, hydrogel has become a research hotspot because of its remarkable characteristics such as directed delivery. The purpose of this study was to explore the effects of 3DFP on the structure, physical properties and functions of hydrogels containing methylcellulose (MC), chlorogenic acid (CA) and hyaluronic acid (HA) for the purpose of revealing the printability and applicability of hydrogels in 3DFP processing. Texture properties, rheological properties, microstructure, embedding rate and digestive properties of the 3D printed products were measured. The results showed that the best CA-loaded hydrogel system for 3DFP processing consisted of MC, HA and CA at a mass ratio of 8:0.5:0.5. Its printed product showed the smallest width deviation (13.40%), the highest hardness, the maximum elasticity, and the minimum adhesiveness, had compact structure and uniform porosity, was not easy to collapse, and had good supportability and the best printing moldability. 3DFP well optimized the physical structure of hydrogel without changing its chemical properties. The embedding rate of CA was 22.09 percentage points higher than that before 3D printing. In simulated gastrointestinal digestion test, the release rate of CA from the printed product was significantly higher than that of the unprinted samples, showing a good sustained release effect, and the in vitro release of CA was fitted to the Ritger-Peppas model. These results showed that the hydrogel system had good printability and applicability, and 3DFP could significantly improve the targeted release of CA loaded in hydrogel

    Chinmedomics strategy for elucidating the effects and effective constituents of Danggui Buxue Decoction in treating blood deficiency syndrome

    No full text
    Introduction:Danggui Buxue Decoction (DBD) is a clinically proven, effective, classical traditional Chinese medicine (TCM) formula for treating blood deficiency syndrome (BDS). However, its effects and effective constituents in the treatment of BDS remain unclear, limiting precise clinical therapy and quality control. This study aimed to accurately evaluate the effects of DBD and identify its effective constituents and quality markers.Methods:BDS was induced in rats by a combined injection of acetylphenylhydrazine and cyclophosphamide, and the efficacy of DBD against BDS was evaluated based on body weight, body temperature, energy metabolism, general status, visceral indices, histopathology, biochemical markers, and metabolomics. The effects of DBD on urinary and serum biomarkers of BDS were investigated, and the associated metabolic pathways were analyzed via metabolomics. Guided by Chinmedomics, the effective constituents and quality markers of DBD were identified by analyzing the dynamic links between metabolic biomarkers and effective constituents in vivo.Results:DBD improved energy metabolism, restored peripheral blood and serum biochemical indices, and meliorated tissue damage in rats with BDS. Correlation analyses between biochemical indices and biomarkers showed that 15(S)-HPETE, LTB4, and taurine were core biomakers and that arachidonic acid, taurine, and hypotaurine metabolism were core metabolic pathways regulated by DBD. Calycosin-7-glucoside, coumarin, ferulic acid sulfate, cycloastragenol, (Z)-ligustilide + O, astragaloside IV, acetylastragaloside I, and linoleic acid were identified as effective constituents improving the hematopoietic function of the rats in the BDS model. Additionally, calycosin-7-glucoside, ferulic acid, ligustilide, and astragaloside IV were identified as quality markers of DBD.Conclusion:The hematopoietic function of DBD was confirmed through analysis of energy metabolism, biochemical markers, histopathology, and metabolomics. Moreover, by elucidating effective constituents of DBD in BDS treatment, quality markers were confirmed using a Chinmedomics strategy. These results strengthen the quality management of DBD and will facilitate drug innovation

    Urinary Metabolic Biomarker and Pathway Study of Hepatitis B Virus Infected Patients Based on UPLC-MS System

    Get PDF
    <div><p>Hepatitis B virus (HBV) is the fatal consequence of chronic hepatitis, and lack of biomarkers has been a long standing bottleneck in the clinical diagnosis. Metabolomics concerns with comprehensive analysis of small molecules and provides a powerful approach to discover biomarkers in biological systems. Here, we present metabolomics analysis applying ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry. (UPLC-Q-TOF-HDMS) to determine metabolite alterations in HBV patients. Most important permutations are elaborated using multivariate statistical analysis and network analysis that was used to select the metabolites for the noninvasive diagnosis of HBV. In this study, the total 11 urinary differential metabolites were identified and contributed to HBV progress involving several key metabolic pathways by using pathway analysis with MetPA, which are promising biomarker candidates for diagnostic research. More importantly, of 11 altered metabolites, 4 metabolite markers were effective for the diagnosis of human HBV, achieved a satisfactory accuracy, sensitivity and specificity, respectively. It demonstrates that metabolomics has the potential as a non-invasive tool to evaluate the potential of these metabolites in the early diagnosis of HBV patients. These findings may be promising to yield a valuable insight into the pathophysiology of HBV and to advance the approaches of diagnosis, treatment, and prevention.</p></div

    A Disruptive Technology Identification Method for New Power Systems Based on Patent Evolution Analysis

    No full text
    Disruptive technologies have been employed in various fields with a strategic priority in several countries as the core driving force of the fourth industrial revolution, significantly impacting the development of new power systems. It is a kernel to effectively identify the future potential of disruptive technologies. To overcome the subjectivity and limitations of existing disruptive technology identification methods, we propose a disruptive technology identification method based on patent evolution analysis. Firstly, the evolution matrix of the patent data is calculated. Afterward, we dig into the characteristics of disruptive technologies to build a more targeted identification index system. Finally, the fields of electric power communication and energy generation are selected as typical cases to build the patent data sets. The future development of the identified technologies, including the identified quantum technologies and controlled fusion, is analyzed. The results demonstrate that the proposed model can identify the key technologies of new power systems accurately and contribute to completing the industrial upgrading and transformation more rapidly
    • …
    corecore