408 research outputs found
Parameterised contact model of pelvic bone and cartilage: development data set
The dataset was created as supplementary materials for the paper "Geometric parameterisation of pelvic bone and cartilage in contact analysis of the natural hip: an initial study". The dataset included the following documentation and data: the comparison results between segmentation-based model and parameterised model and the sensitivity analysis for the segmentation-based model; the detailed methodology of FE model development for segmentation-based model and parameterised model; the FE models for the two types of models and the solid models of the components for the two types of models
The Impact of Inter-City Traffic Restriction on COVID-19 Transmission from Spatial Econometric Perspective
The aim of this paper is to conduct a spatial correlation study of virus transmission in the Hubei province, China. The number of confirmed COVID-19 cases released by the National Health and Construction Commission, the traffic flow data provided by Baidu migration, and the current situation of Wuhan intercity traffic were collected. The Moran’s I test shows that there is a positive spatial correlation between the 17 cities in the Hubei province. The result of Moran’s I test also shows that four different policies to restrict inter-city traffic can be issued for the four types of cities. The ordinary least squares regression, spatial lag model, spatial error model, and spatial lag error model were built. Based on the analysis of the spatial lag error model, whose goodness of fit is the highest among the four models, it can be concluded that the speed of COVID-19 spread within a certain region is not only related to the current infection itself but also associated with the scale of the infection in the surrounding area. Thus, the spill-over effect of the COVID-19 is also presented. This paper bridges inter-city traffic and spatial economics, provides a theoretical contribution, and verifies the necessity of a lockdown from an empirical point of view
The skull of Monolophosaurus jiangi (Dinosauria:Theropoda) and its implications for early theropod phylogeny and evolution
The Middle Jurassic was a critical time in the evolution of theropod dinosaurs, highlighted by the origination and initial radiation of the large-bodied and morphologically diverse Tetanurae. Middle Jurassic tetanurans are rare, but have been described from Europe, South America and China. In particular, China has yielded a number of potential basal tetanurans, but these have received little detailed treatment in the literature. Chief among these is Monolophosaurus jiangi, known from a single skeleton that includes a nearly complete and well-preserved skull characterized by a bizarre cranial crest. Here, we redescribe the skull of Monolophosaurus, which is one of the most complete basal tetanuran skulls known and the only quality source of cranial data for Middle Jurassic Chinese theropods. The cranial crest is atomized into a number of autapomorphic features and several characters confirm the tetanuran affinities of Monolophosaurus. However, several features suggest a basal position within Tetanurae, which contrasts with most published cladistic analyses, which place Monolophosaurus within the more derived Allosauroidea. Cranial characters previously used to diagnose Allosauroidea are reviewed and most are found to have a much wider distribution among Theropoda, eroding an allosauroid position for Monolophosaurus and questioning allosauroid monophyly. The use of phylogenetic characters relating to theropod cranial crests is discussed and a protocol for future use is given. The systematic position of Guanlong wucaii is reviewed, and a basal tyrannosauroid affinity is upheld contrary to one suggestion of a close relationship between this taxon and Monolophosaurus. © 2010 The Linnean Society of London
The contact mechanics and occurrence of edge loading in modular metal-on-polyethylene total hip replacement during daily activities
The occurrence of edge loading in hip joint replacement has been associated with many factors such as prosthetic design, component malposition and activities of daily living. The present study aimed to quantify the occurrence of edge loading/contact at the articulating surface and to evaluate the effect of cup angles and edge loading on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR) during different daily activities. A three-dimensional finite element model was developed based on a modular MoP bearing system. Different cup inclination and anteversion angles were modelled and six daily activities were considered. The results showed that edge loading was predicted during normal walking, ascending and descending stairs activities under steep cup inclination conditions (≥55°) while no edge loading was observed during standing up, sitting down and knee bending activities. The duration of edge loading increased with increased cup inclination angles and was affected by the cup anteversion angles. Edge loading caused elevated contact pressure at the articulating surface and substantially increased equivalent plastic strain of the polyethylene liner. The present study suggested that correct positioning the component to avoid edge loading that may occur during daily activities is important for MoP THR in clinical practice
Antimicrobial resistance and the growing threat of drug-resistant tuberculosis
The purpose of this study was to investigate the associations between birth weight, chest circumference, and lung function in preschool children from e-waste exposure area. A total of 206 preschool children from Guiyu (an e-waste recycling area) and Haojiang and Xiashan (the reference areas) in China were recruited and required to undergo physical examination, blood tests, and lung function tests during the study period. Birth outcome such as birth weight and birth height were obtained by questionnaire. Children living in the e-waste-exposed area have a lower birth weight, chest circumference, height, and lung function when compare to their peers from the reference areas (all p value <0.05). Both Spearman and partial correlation analyses showed that birth weight and chest circumference were positively correlated with lung function levels including forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1). After adjustment for the potential confounders in further linear regression analyses, birth weight, and chest circumference were positively associated with lung function levels, respectively. Taken together, birth weight and chest circumference may be good predictors for lung function levels in preschool children
Genome-wide analysis of antisense transcription with Affymetrix exon array
<p>Abstract</p> <p>Background</p> <p>A large number of natural antisense transcripts have been identified in human and mouse genomes. Study of their potential functions clearly requires cost-efficient method for expression analysis.</p> <p>Results</p> <p>Here we show that Affymetrix Exon arrays, which were designed to detect conventional transcripts in the sense orientation, can be used to monitor antisense expression across all exonic loci in mammalian genomes. Through modification of the cDNA synthesis protocol, we labeled single-strand cDNA in the reverse orientation as in the standard protocol, thus enabling the detection of antisense transcripts using the same array. Applying this technique to human Jurkat cells, we identified antisense transcription at 2,088 exonic loci of 1,516 UniGene clusters. Many of these antisense transcripts were not observed previously and some were validated by orientation-specific RT-PCR.</p> <p>Conclusion</p> <p>Our results suggest that with a modified protocol Affymetrix human, mouse and rat Exon arrays can be used as a routine method for genome-wide analysis of antisense transcription in these genomes.</p
A New Leptoceratopsid (Ornithischia: Ceratopsia) from the Upper Cretaceous of Shandong, China and Its Implications for Neoceratopsian Evolution
BACKGROUND: The ceratopsians represent one of the last dinosaurian radiations. Traditionally the only universally accepted speciose clade within the group was the Ceratopsidae. However, recent discoveries and phylogenetic analyses have led to the recognition of a new speciose clade, the Leptoceratopsidae, which is predominantly known from the Upper Cretaceous of North America. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a new leptoceratopsid taxon, Zhuchengceratops inexpectus gen. et sp. nov., based on a partial, articulated skeleton recovered from the Upper Cretaceous Wangshi Group of Zhucheng, Shandong Province, China. Although Zhuchengceratops is significantly different from other known leptoceratopsids, it is recovered as a derived member of the group by our phylogenetic analysis. Furthermore, Zhuchengceratops exhibits several features previously unknown in leptoceratopsids but seen in ceratopsids and their close relatives, suggesting that the distribution of morphological features within ceratopsians is more complex than previously realized. CONCLUSION/SIGNIFICANCE: The discovery of Zhuchengceratops increases both the taxonomic diversity and the morphological disparity of the Leptoceratopsidae, providing further support for the hypothesis that this clade represents a successful radiation of horned dinosaurs in parallel with the Ceratopsidae in the Late Cretaceous. This documents a surprising case of the coexistence and radiation of two closely-related lineages with contrasting suites of jaw and dental features that probably reflect adaptation to different food resources
- …