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Abstract—The Middle Jurassic was a critical time in the evolution of theropod 

dinosaurs, highlighted by the origination and initial radiation of the large-bodied and 

morphologically diverse Tetanurae. Middle Jurassic tetanurans are rare but have been 

described from Europe, South America, and China. In particular, China has yielded a 

number of potential basal tetanurans but these have received little detailed treatment in 

the literature. Chief among these is Monolophosaurus jiangi, known from a single 

skeleton that includes a nearly complete and well-preserved skull characterized by a 

bizarre cranial crest. Here we redescribe the skull of Monolophosaurus, which is one of 
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the most complete basal tetanuran skulls known and the only quality source of cranial 

data for Middle Jurassic Chinese theropods. The cranial crest is atomised into a number 

of autapomorphic features and several characters confirm the tetanuran affinities of 

Monolophosaurus. However, several features suggest a basal position within Tetanurae, 

which contrasts with most published cladistic analyses, which place Monolophosaurus 

within the more derived Allosauroidea. Cranial characters previously used to diagnose 

Allosauroidea are reviewed and most are found to have a much wider distribution among 

Theropoda, eroding an allosauroid position for Monolophosaurus and questioning 

allosauroid monophyly. The use of phylogenetic characters relating to theropod cranial 

crests is discussed and a protocol for future use is given. The systematic position of 

Guanlong wucaii is reviewed, and a basal tyrannosauroid affinity is upheld contra to one 

suggestion of a close relationship between this taxon and Monolophosaurus.  

 

ADDITIONAL KEYWORDS: Allosauroidea—cladistics—China—cranial crest—

dinosaur—evolution—Guanlong—Jurassic—Mesozoic—palaeontology  
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INTRODUCTION 

The Middle Jurassic was a critical interval in the evolution of theropod dinosaurs, 

but much about theropod anatomy, phylogeny, and diversity during this time period 

remains poorly understood. Up until this time theropod faunas had been dominated by 

coelophysoids, primitive and mostly small-bodied carnivores that were abundant and 

widespread until their extinction in the Early Jurassic (Carrano et al., 2005, Ezcurra & 

Novas, 2007). Subsequently, derived theropod clades characterized by larger body size 

and more diverse morphology originated and radiated in the Early-Middle Jurassic 

(Sereno, 1999, Rauhut, 2003, Allain et al., 2007, Smith et al., 2007, Carrano & Sampson, 

2008). The most diverse and most important of these clades, Tetanurae, included the 

largest carnivorous dinosaurs in most post-Early Jurassic ecosystems and later gave rise 

to birds. 

The early evolution of Tetanurae is poorly understood, which is largely the fault 

of a meager Early-Middle Jurassic theropod fossil record (Rauhut, 2003). Most recent 

phylogeneic hypotheses imply that this clade originated in the latest Early Jurassic (e.g., 

Rauhut, 2003, Smith et al., 2007, Carrano & Sampson, 2008). The oldest known 

unequivocal tetanurans are found in slightly younger beds, and include the fragmentary 

Magnosaurus nethercomensis and “Megalosaurus” hesperis from the Bajocian (early 

Middle Jurassic) of England (Waldman, 1974). Far more complete are several Middle 

Jurassic theropods from China (Zhao et al., in prep), which unfortunately have only been 

briefly described (Dong, 1984, Dong & Tang, 1985, Gao, 1993; Zhao & Currie, 1993). 

As a result, these taxa are frequently excluded from studies of theropod phylogeny and 
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evolution, despite representing a lion’s share of available data from this crucial time 

period. 

The most complete of these taxa is Monolophosaurus jiangi, a large-bodied 

theropod represented by a partial skeleton from the Middle Jurassic Shishugou Formation 

of the Junggar Basin. The skull of Monolophosaurus is essentially complete and well-

preserved, rendering it not only the sole source of quality cranial data for early Middle 

Jurassic Chinese theropods, but also one of the best-known skulls of any basal theropod 

dinosaur. The skull is also highly autapomorphic, as it is characterized by a bizarre and 

heavily pneumatised midline crest. However, despite the completeness and uniqueness of 

the skull, Monolophosaurus has only been briefly described, thus hampering more 

complete study of its phylogenetic and evolutionary importance. This crested theropod 

was originally described in a short publication by Zhao & Currie (1993), who noted a 

strange mosaic of primitive and derived theropod features. They classified it as a 

“megalosaur-grade” theropod closely related to Allosaurus. Subsequent cladistic studies 

supported this determination, often placing Monolophosaurus within Allosauroidea, a 

clade of basal tetanurans including Allosaurus, Sinraptor, and other Late Jurassic-Early 

Cretaceous theropods (Sereno et al., 1994, 1996, Holtz, 2000, Currie & Carpenter, 2000, 

Rauhut, 2003, Holtz et al., 2004). However, recent work has suggested that the affinities 

of this taxon may lie elsewhere, perhaps closer to the base of Tetanurae (Smith et al., 

2007; Brusatte & Sereno, 2008). The evaluation of these alternatives hinges on a better 

understanding of Monolophosaurus anatomy. 

Here we describe the cranial anatomy of Monolophosaurus. A redescription of the 

postcranial anatomy will be published elsewhere (Zhao et al., in prep). This redescription 
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is used to address the phylogenetic position of the taxon, as well as the higher-level 

relationships of Guanlong wucaii, a supposed basal tyrannosauroid from higher in the 

Shishugou Formation (Xu et al., 2006). This is primarily intended to be a thorough and 

rigorous description of the cranial osteology of a single theropod taxon. Along with 

similar recent monographs (Madsen, 1976, Welles, 1984, Charig & Milner, 1997, Currie 

& Zhao, 1993, Harris, 1998, Madsen & Welles, 2000, Brochu, 2002, Sampson & Krause, 

2007; Brusatte et al., 2008) we aim to provide primary descriptive data that can be 

incorporated into wider studies of theropod evolution, especially phylogenetic analyses, 

many of which have hitherto scored Monolophosaurus based solely on the short original 

description, or excluded it entirely despite its completeness and phylogenetic importance. 

 

ABBREVIATIONS 

Institutions: FMNH, Field Museum of Natural History, Chicago; IVPP, Institute of 

Vertebrate Palaeontology and Palaeoanthropology, Beijing; MUCP, Museo de la 

Universidad Nacional del Comahue, El Chocón collection, El Chocón; OMNH, Sam 

Noble Oklahoma Museum of Natural History, Norman; OUMNH, Oxford University 

Museum of Natural History, Oxford; UCMP, University of California Museum of 

Paleontology, Berkeley; UC OBA, University of Chicago Department of Organismal 

Biology, Chicago; UMNH, Utah Museum of Natural History, Salt Lake City. 

 

SYSTEMATIC PALAEONTOLOGY 

DINOSAURIA OWEN, 1842 

SAURISCHIA SEELEY, 1888 
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THEROPODA MARSH, 1881 

TETANURAE GAUTHIER, 1986 

MONOLOPHOSAURUS JIANGI ZHAO & CURRIE, 1993 

 

Holotype: IVPP 84019, a complete skull and partial postcranial skeleton comprising the 

pelvis and axial column from the atlas to the sixth caudal vertebra 

 

Type locality and horizon: Middle Jurassic Shishugou Formation (Eberth et al. 2001), 34 

km northeast of Jiangjunmiao in the Jiangjunmiao Depression within the Junggar Basin, 

Xinjiang, People's Republic of China. Monolophosaurus was collected from low in the 

Shishugou Formation section north of the now-abandoned village of Jiangjunmiao and 

east of Gui Hua Mu Yuan (Silicified Wood Park). Based on radiometric ages from 

overlying tuffs and biostratigraphic data from within and below the Shishugou 

Formation, Monolophosaurus is regarded as no younger than late Callovian (pers. comm. 

D.A. Eberth, 2009). 

 

Diagnosis: Basal tetanuran theropod possessing the following autapomorphies of the 

cranium: nasal process of premaxilla bifurcating posteriorly at its contact with the nasal; 

lateral surface of premaxilla with deep groove leading from subnarial foramen to a 

foramen on the base of the nasal process; raised crest on nasal with straight dorsal margin 

that is nearly parallel to the alveolar margin of the maxilla; two enlarged and equal-sized 

pneumatic fenestrae in the nasal; lacrimal with discrete tab-like process projecting 

dorsally above the preorbital bar; associated frontals that are rectangular and much wider 
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than long (width:length ratio of 1.67). One autapomorphy has been documented in the 

postcranial skeleton: a ‘cuppedicus fossa’ of the ilium formed by the presence of a lateral 

bounding ridge (Zhao et al., in prep). 

 

ANATOMICAL DESCRIPTION 

 

 The type and only known specimen of Monolophosaurus is deeply embedded in 

hard foam for traveling exhibition, permitting only detailed observation of the right 

lateral surface of the skull, as well as the limited views of the dorsal, ventral, anterior, and 

posterior surfaces of some elements. Observation of the medial surfaces of skull bones is 

not possible, and detailed observation of articular contacts and certain surfaces is 

precluded by the articulated nature of the skull.  

 The cranium (Fig. 1) is 800 mm long anteroposteriorly (from the anteroventral 

corner of the premaxilla to the posteroventral corner of the quadratojugal/quadrate). Its 

most unique feature is a bizarre midline crest comprised of the premaxillae, nasals, 

lacrimals, prefrontals, and frontals, (Figs. 1-4) which is atomized into several 

autapomorphic characters described below. Additionally, Monolophosaurus differs from 

most other theropods in the possession of a greatly enlarged external naris, which is 168 

mm long anteroposteriorly, 43 mm deep dorsoventrally at its midpoint, and 65 mm deep 

posteriorly. The naris is subrectangular and approximately horizontally-inclined, with a 

greatest dimension of 200 mm that trends slightly anteroventrally. The ratio of the 

greatest dimension of the naris to the skull length is 0.25, much greater than in other basal 

theropods (Table 1) and most coelurosaurs. Therizinosaurs (e.g., Erlikosaurus: Clark et 
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al., 1994) and oviraptorosaurs (e.g., Citipati: Clark et al., 2002) also possess enlarged 

nares, but these differ from those in Monolophosaurus in shape and orientation. The 

nares of therizinosaurs are anteroposteriorly elongate and shallow dorsoventrally, 

whereas those of oviraptorosaurs are more circular with a long axis inclined strongly 

anteroventrally, and even nearly vertical in some taxa (e.g., Conchoraptor: Osmolska et 

al., 2004). The basal tyrannosauroid Guanlong (Xu et al., 2006) also has an elongate 

naris very similar to that of Monolophosaurus, as discussed below, as does the basal 

coelurosaur Proceratosaurus (BMNH R 4860). 

The antorbital fenestra is 162 mm long and somewhat triangular in shape, with a 

depth of 106 mm at the posterior margin, which is reduced to only 40 mm anteriorly. The 

keyhole-shaped orbit is 130 mm deep and 90 mm long anteroposteriorly at its greatest 

extent, but is constricted to a length of only 12 mm ventrally by the highly convex 

margins of the lacrimal and postorbital. The lateral temporal fenestra is 143 mm deep, 80 

mm long ventrally, and 54 mm long dorsally. It is narrowest at the midpoint, where 

anteriorly-oriented processes of the squamosal and quadratojugal constrict the fenestra to 

a length of 50 millimeters. The supratemporal fenestra is 78 mm transversely wide, 32 

mm anterposteriorly long at its medial margin, and 71 mm long laterally, not counting a 

narrow notch that extends posteriorly (see below). 

 
 

CRANIUM 

 

Premaxilla: The premaxilla (Figs. 1-3) is an unusual bone in Monolophosaurus. The 

premaxillary body is longer (112 mm) than high (71 mm) as in Allosaurus (Madsen, 
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1976), Dracovenator (Yates, 2005), Dilophosaurus (Welles, 1984), Dubreuillosaurus 

(Allain, 2002), and coelophysids (Colbert, 1989), not higher than long as in 

Acrocanthosaurus (Currie & Carpenter, 2000), Ceratosaurus (Madsen & Welles, 2000), 

Torvosaurus (Britt, 1991), abelisaurids, and several coelurosaurs (e.g., tyrannosauroids, 

oviraptorosaurs). However, the premaxillary body is not as relatively long 

anteroposteriorly as in Dracovenator, Dilophosaurus, coelophysids, and spinosaurids, in 

which the external naris begins posterior to the premaxillary tooth row.  

The anterior margin of the premaxilla is approximately vertically straight as in 

Allosaurus, Ceratosaurus, Majungasaurus, and Sinraptor, not rounded and inclined 

posteroventrally as in Acrocanthosaurus, Dracovenator, Dubreuillosaurus, and 

Torvosaurus. In Monolophosaurus the anterior margin is projected slightly anterodorsally 

such that the angle between the alveolar margin and anterior margin (“premaxillary 

angle” of some authors) is greater than 90 degrees, a condition common in taxa with 

straight anterior margins. The straight anterior surface extends 92 mm dorsally until an 

inflection point (Fig. 2, ip), level with the midpoint of the external naris, at which the 

surface curves posterodorsally as it gives rise to the nasal process. Such an extreme 

dorsal elongation of the straight anterior margin is not seen in other basal theropods with 

this feature, which instead possess an inflection point located much further ventrally (e.g., 

Allosaurus, Majungasaurus, Sinraptor). However, an extensive straight margin is present 

in some tyrannosauroids (e.g., Dilong: Xu et al., 2004; Eotyrannus: Hutt et al., 2001; 

Guanlong Xu et al., 2006; Tyrannosaurus: Brochu, 2002, Holtz, 2004). 

 Articulation with the maxilla is complex. Ventrally, a dorsoventrally oriented 

groove on the posterior surface of the premaxilla abuts the anterior margin of the maxilla. 
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Dorsal to this long contact surface is a posteriorly-projecting flange of the premaxilla, the 

maxillary process, which is visible as a discrete projection in lateral view (Fig. 1; Fig. 3, 

pmmp). The elongate ventral contact is slightly posterdorsally inclined, although not to 

the extent in most basal theropods (e.g. coelophysids: Tykoski & Rowe, 2004; 

Ceratosaurus: Madsen & Welles, 2000; allosauroids: Currie & Carpenter, 2000, Coria & 

Currie, 2006). Instead, the condition is more similar to Allosaurus, in which this 

articulation is generally straight dorsoventrally (Madsen, 1976). There is no subnarial gap 

or notch along the tooth row where the premaxilla and maxilla articulate, as is the case in 

coelophysids (Colbert, 1989) and Zupaysaurus (Ezcurra, 2007). The maxillary process is 

thin and finger-like and slightly wraps around the maxilla medially. It extends 50 mm 

posterior to the ventral premaxillary-maxillary articulation, is parallel with the alveolar 

margin, and tapers in depth posteriorly. 

The nasal process of the premaxilla is unique in Monolophosaurus, as it bifurcates 

posteriorly to receive the anterior portion of the nasal (Fig. 2B, pmndp, pmnvp). The 

dorsal ramus of this bifurcation is much larger than the ventral prong. It takes the form of 

a posteroventrally-inclined elongate triangle that is 42 mm dorsoventrally deep at its 

base. In contrast, the ventral prong is finger-like, keeps a relatively constant depth of 

approximately 10 mm throughout its length, and is oriented nearly parallel to the alveolar 

row. Both processes extend posteriorly for approximately 120 mm. The ventral prong 

was not figured by Zhao & Currie (1993:fig 1), and represents an autapomorphy of 

Monolophosaurus, as it is not present in other basal tetanurans (e.g., Madsen, 1976). 

 The lateral surface of the premaxilla is rugose and ornamented with numerous 

foramina, many of which are set into shallow grooves. These foramina are especially 
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concentrated near the anterior margin of the bone. A single large foramen is located at the 

base of the nasal process (Fig. 2B, for) as in many theropods (e.g., Dubreuillosaurus, 

Neovenator, Torvosaurus, Tyrannosaurus). This foramen resembles a dorsoventrally-

elongated oval, and is not slot-shaped as in Dilophosaurus and Dracovenator (Yates, 

2005). A large oval-shaped subnarial foramen (17 mm dorsoventrally deep by 11 mm 

anteroposteriorly long) is present between the premaxilla and maxilla immediately 

ventral to the maxillary process of the premaxilla. A shallow groove extends anteriorly 

from the subnarial foramen, paralleling the ventral border of the external naris (Fig. 2B, 

gr). The groove curves dorsally to follow the anterior margin of the naris and becomes 

confluent with the foramen at the base of the nasal process. Such a groove is unknown in 

other theropods and represents another autapomorphy of Monolophosaurus. The lateral 

surface of the premaxilla around the periphery of the external naris does not bear a 

shallow fossa  as it does in Acrocanthosaurus, Allosaurus, Dracovenator, 

Dubreuillosaurus, Sinraptor, and many other basal theropods; instead, this region is 

slightly rugose. The dorsal prong of the nasal process is also rugose, and is marked by 

numerous linear striations that are horizontal anteriorly but slightly posterodorsally 

inclined on the posterior surface of the process. Most of the premaxillary body shows a 

mottled and irregular pattern of rugosity. 

 Because the skull is articulated, most details of the medial surface of the 

premaxilla are concealed. However, it is apparent that the interdental plates are unfused, 

and resemble dorsoventrally-shallow triangles. The labial wall of the alveolar row, 

comprised of the lateral surface of the premaxillary body, extends further ventrally than 

the lingual wall, which is formed from the interdental plates. Four alveoli are present, and 
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the first is notably smaller than the remaining three (Table 2). There is no en echelon 

overlap of the alveoli as has been described in Torvosaurus (Britt, 1991) and is present in 

other basal theropods (e.g., Dubreuillosaurus: MNHN 1998-13; Neovenator: Brusatte et 

al., 2008). 

 

Maxilla: The maxilla (Figs. 1-3) is 400 mm long anteroposteriorly along the tooth row, 

and comprises most of the ventral and anterior border of the antorbital fenestra. The 

maxillary body tapers only slightly in depth posteriorly, thinning from a depth of 65 mm 

at the anterior margin of the antorbital fenestra to 50 mm at the posterior end of the bone. 

This contrasts with most basal theropods (e.g., Allosaurus: Madsen, 1976; 

Dubreuillosaurus: Allain, 2002; Piatnitzkysaurus: Bonaparte, 1986; Sinraptor: Currie & 

Zhao, 1993), in which the maxilla extensively tapers posteriorly, and is similar to the 

condition in Zupaysaurus (Ezcurra, 2007) and abelisaurids, which possess maxillae that 

maintain a relatively constant depth throughout their length.  

As in many other basal tetanurans there is a distinct anterior ramus that projects 

from the maxillary body anterior to the ascending ramus (Fig. 2B, mar). In 

Monolophosaurus this ramus is roughly square-shaped, with a depth of 92 mm and an 

anteroposterior length of 90 mm. Similar rami are present in Afrovenator (Sereno et al., 

1994), Allosaurus (Madsen, 1976), Dubreuillosaurus (Allain 2002), Neovenator 

(Brusatte et al., 2008), Torvosaurus (Britt 1991), and spinosaurids, many of which 

exhibit a projection that is longer than deep. In contrast, many basal theropods (e.g., 

Acrocanthosaurus: Currie & Carpenter, 2000; Ceratosaurus: Madsen & Welles, 2000; 
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Coelophysis: Colbert, 1989; Sinraptor: Currie & Zhao, 1993; Zupaysaurus: Ezcurra, 

2007) possess a slight ramus that is much deeper than long or lack this process altogether.  

 The surfaces for contact with the premaxilla, nasal, jugal, and lacrimal are 

preserved. The premaxilla is contacted via a nearly vertical margin on the anterior surface 

of the anterior ramus, and the nasal articulates with the anterior and dorsal surfaces of the 

ascending ramus. This latter articulation does not reach the posterior margin of the 

maxilla-premaxilla contact, thus allowing the maxilla to make a 40 mm contribution to 

the external naris. A maxillary contribution to the external naris is also seen in many 

other basal theropods, including Afrovenator, Carcharodontosaurus (Sereno et al., 1996), 

Neovenator, Torvosaurus (Britt, 1991), and spinosaurids (Sues et al., 2002). The jugal 

laterally overlaps the maxilla across a posteroventrally-oriented articulation, which 

results in a thin and tapering posterior process of the maxilla that extends 40 mm 

posterior to the maxillary body. Finally, the posterior surface of the maxillary ascending 

ramus is excavated by a shallow notch for articulation with the lacrimal. The maxilla 

overlaps the lacrimal at this contact. 

 In lateral view, the surface of the maxilla is marked by numerous foramina, which 

are especially abundant near the articulation with the premaxilla and along the tooth row. 

These latter foramina are large, measuring up to 5 mm in diameter, and are located 

immediately above and parallel to the tooth row for the entire length of the bone. The 

foramina decrease in size posteriorly, and grade into a groove that continues posteriorly 

from the level of the 11th alveolus. This sculpturing is broadly similar to that of most 

theropods, and is not as extensive as in most carcharodontosaurids (Sereno et al., 1996; 

Brusatte & Sereno, 2007; Brusatte et al., 2008) or abelisaurids (Lamanna et al., 2002; 
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Sampson & Witmer, 2007), in which elongated grooves and ridges ornament much of the 

lateral surface.  

The ascending ramus of the maxilla (Fig. 2B, masr) rises posterodorsally from the 

maxillary body at an angle of approximately 45 degrees. It maintains a posterodorsal 

trend for 102 mm, reaches an inflection point, and continues as a horizontal process for 

64 mm before articulating with the lacrimal (Fig. 2B, mk). A similar inflection is seen in 

Neovenator (Brusatte et al., in prep), and is not as pronounced as the distinct kink seen in 

spinosauroids such as Afrovenator (UC OBA 1) and Dubreuillosaurus (Allain, 2002). 

The lateral lamina of the ascending ramus slightly overhangs the anterior margin of the 

antorbital fossa, thins as it continues dorsally, and merges with the medial lamina at the 

inflection point. Posterior to the inflection point the medial lamina articulates with the 

lacrimal and nasal, and all three elements are excavated by the antorbital fossa. 

 The antorbital fossa excavates the lateral surfaces of the posterior region of the 

ascending ramus and the dorsal region of the maxillary body. On the ascending ramus, 

the fossa extends 46 mm posteriorly before reaching the antorbital fenestra. Thus, it is not 

elongated anteroposteriorly as in coelurosaurs (Holtz et al., 2004). The fossa has limited 

exposure on the maxillary body, extending 18 mm ventrally immediately anterior to the 

antorbital fenestra and tapering to a depth of 8 mm in the region of the jugal articulation. 

This contrasts with the more extensive fossa on the maxillary body of coelophysids, some 

spinosauroids (Afrovenator, Dubreuillosaurus: Allain, 2002), Zupaysaurus (Ezcurra, 

2007), Ceratosaurus (Madsen & Welles, 2000), and some allosauroids (Madsen, 1976; 

Currie & Zhao, 1993), as well as the total lack of the antorbital fossa on the maxillary 

body of most abelisaurids (Sampson & Witmer, 2007). Anteriorly, the rim surrounding 
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the antorbital fossa is rounded, not squared-off as in Afrovenator, Dubreuillosaurus, 

Zupaysaurus, some carcharodontosaurids (Eocarcharia, Neovenator: Sereno & Brusatte, 

2008), and coelophysids (Colbert, 1989; Ezcurra, 2007). The rim along the ventral 

margin of the fossa is sharply defined anteriorly, but it becomes less prominent 

posteriorly, such that posterior to the 8th alveolus the antorbital fossa is only demarcated 

by a slight change in bone texture. Again, this contrasts with the condition in 

coelophysids and Zupaysaurus, which are characterized by a sharp rim paralleling the 

tooth row throughout its length.  

A single accessory antorbital opening pierces the antorbital fossa in 

Monolophosaurus (Fig. 2B, 3, acf). The identification of this opening is unclear: Witmer 

(1997:44) describes it as ambiguous but regards it as “occupying the position of the 

promaxillary fenestra.” As its relationships to the internal antorbital sinuses are unknown 

we do not assign this opening a name. Although broken margins preclude an exact 

measurement, apparently this opening was quite large and deep. The opening on the right 

side appears to be closed medially, not open as reconstructed on the left side by Zhao & 

Currie (1993), and therefore forms a fossa rather than a fenestra. The pillar separating this 

opening from the antorbital fenestra is thin, measuring only 20 mm in anteroposterior 

length. There is no pneumatic excavation on the ascending ramus as in Acrocanthosaurus 

(NCSM 14345), Eocarcharia (Sereno & Brusatte, 2008), and Sinraptor (Currie & Zhao, 

1993), and to a lesser extent Ceratosaurus (Madsen & Welles, 2000) and some 

specimens of Allosaurus (Witmer, 1997). Finally, there is no smaller anterior opening 

concealed by the lateral lamina, as is sometimes the case in theropods (Witmer, 1997). 
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In medial view, the interdental plates are dorsoventrally shallow and appear to be 

unfused, although exact measurements were not possible. As in the premaxilla, the labial 

wall of the alveoli extends further ventrally than the lingual wall. The tooth row contains 

13 alveoli. The teeth were heavily reconstructed for exhibition, but functional teeth are 

present and visible in alveoli 2, 4, 7, and 9 on the right side. Low, band-like enamel 

wrinkles are present on the labial surfaces of exposed crowns. These are similar in 

morphology to the enamel wrinkles of many basal tetanurans (Brusatte et al., 2007) and 

differ from the more pronounced wrinkles of some carcharodontosaurids, which are 

especially distinct marginally near the serrations.   

 
Nasal: The nasal of Monolophosaurus is a distinctive bone, as it is expanded and greatly 

modified to form the major component of the cranial crest (Figs. 1-4). This element is 

435 mm long anteroposteriorly and is broadly exposed in lateral view throughout its 

length, in contrast to most other basal theropods. Such exposure is the result of extreme 

dorsal expansion, which is also the case in the crested Dilophosaurus (Welles, 1984) but 

not Cryolophosaurus (Smith et al., 2007). Zupaysaurus was originally described as 

possessing a similar crest comprised of dorsoventrally-expanded and laterally-exposed 

nasals (Arcucci & Coria, 2003), but the holotype was recently reinterpreted as lacking 

any sort of cranial ornamentation (Ezcurra, 2007). Additionally, the anterior region of the 

nasal of Ceratosaurus is expanded dorsoventrally (Madsen & Welles, 2000), but this 

localized, horn-like structure is clearly different from the crest of Monolophosaurus, 

which involves the entire nasal.  

In Monolophosaurus, the nasals are also anteroposteriorly-expanded, such that 

they extend posterior to the lacrimals and prefrontals (Fig. 2D, 3, 4, npp). This is not the 
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case in Dilophosaurus (Welles, 1984) or Cryolophosaurus (Smith et al., 2007). The 

dorsal margin of the nasal contribution to the crest is nearly straight in Monolophosaurus, 

and is approximately parallel to the alveolar margin of the maxilla throughout its entire 

length (~5 degree angle). This is an autapomorphy, and differs from the condition of 

other basal theropods which generally exhibit an angle of 30-40 degrees (e.g., Allosaurus, 

Ceratosaurus, Majungasaurus, Sinraptor) or a rounded dorsal margin (e.g., 

Dilophosaurus, Guanlong: Xu et al., 2006). 

 The nasal articular surfaces for the premaxilla, maxilla, lacrimal, frontal, and 

prefrontal are preserved. The maxilla and lacrimal are contacted by the ventral surface of 

the nasal, and thus any details of this contact are obscured by the articulated nature of the 

skull. The dorsal expansion of the lacrimal also makes contact with the lateral surface of 

the nasal, but crushing obscures further details. The prefrontal articulates with the 

posterolateral corner of the nasal immediately dorsal to the orbital rim, and the frontal 

meets the posterior end of the nasal in an approximately transverse contact near the 

posterior termination of the crest. The nasals are not separated posteriorly by a wedge of 

the frontals as in Cryolophosaurus (Smith et al., 2007). Contact with the premaxilla takes 

the form of a large, elongate, triangle-shaped process that extends 125 mm anterior to the 

nasal body. This process is oriented approximately horizontally for most of its length, 

demarcating the dorsal rim of the external naris. However, it curves slightly ventrally as it 

tapers anteriorly, and meets the premaxilla along an anteroventrally-trending suture. 

Ventral to this process the ascending ramus of the maxilla is contacted by a much 

smaller, finger-like process. This 53-mm-long process is angled strongly anteroventrally, 

tapers as it continues ventrally, and forms the posterior margin of the external naris. 
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 Dorsally, the opposing nasals are coossified but the midline suture is still visible. 

The nasal crest rises into a thick sheet dorsally, similar to the condition in Dilophosaurus 

and Guanlong (Xu et al., 2006), although the crests of these taxa are much thinner. Thus, 

the nasal is not flat dorsally as in most basal theropods (e.g., Zupaysaurus: Ezcurra, 2007; 

coelophysids: Tykoski & Rowe, 2004) or vaulted and broadly convex dorsally as in other 

taxa with fused nasals (e.g., Majungasaurus: Sampson & Witmer, 2007; tyrannosauroids: 

Snively et al., 2006). The nasals of Ceratosaurus are flat posterior to the nasal horn 

(Madsen & Welles, 2002) and those of abelisaurids are convex (Bonaparte et al., 1990). 

Allosaurus (Madsen, 1976), Cryolophosaurus (Smith et al., 2007), and Neovenator 

(Brusatte et al., 2008) exhibit an interesting condition in which robust lateral ridges give 

the nasal a somewhat concave appearance in dorsal view. Nevertheless, this morphology 

is broadly similar to that of most basal theropods, which are characterized by extensively-

exposed nasals in dorsal view, and differs from Monolophosaurus. However, 

Monolophosaurus shares with Cryolophosaurus nasals that become pinched between the 

lacrimals in dorsal view (Smith et al., 2007:fig 6), although the morphology is different 

in detail. In Cryolophosaurus the nasals terminate underneath the lacrimal crest and do 

not greatly expand posterior to the pinched region. In contrast, the nasals of 

Monolophosaurus extend posterior to the expanded lacrimal contribution to the crest 

(Figs. 2D, 3, 4, npp), and expand in width posterior to the constriction such that the width 

of the posterior margin is nearly identical to the width of the nasal body anteriorly. 

 The lateral surface of the nasal is heavily rugose, except for the region excavated 

by the antorbital fossa (Figs. 1, 3, nantfos). The premaxillary process and anterior region 

of the nasal body exhibit a swollen and knobby texture, which includes a series of 
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discrete swellings (Figs. 2B, 3, nk). The right nasal is marked by two knobs on the 

premaxillary process and one immediately posterior to the process on the nasal body. The 

most anterior knob is located directly dorsal to the midpoint of the external naris. 

Posterior to this is a much larger swelling positioned dorsal to the posterodorsal corner of 

the external naris. This rugosity is 35 mm deep dorsoventrally and 70 mm long 

anteroposteriorly at its widest extent, and overhangs the nasal 24 mm laterally. Finally, 

posterior to this knob is 70-mm-long V-shaped knob dorsal to the inflection point on the 

maxillary ascending ramus. This knob has a maximum depth of 20 mm and projects 14 

mm laterally. The posterior wing of the swelling demarcates the anterodorsal border of 

the antorbital fossa, and is essentially continuous with the edge of the lateral lamina of 

the maxilla. This wing forms a ridge that pinches out posteriorly, and in this region the 

antorbital fossa is only demarcated by a gentle change in bone texture.  

 The nasal antorbital fossa of Monolophosaurus is unique. The nasal contributes to 

the antorbital fossa in allosauroids; it is broadly exposed in lateral view in Allosaurus 

(Madsen, 1976) and Sinraptor (Currie & Zhao, 1993), is reduced laterally in Neovenator 

(Brusatte et al., 2008), and is restricted to the ventral surface in derived 

carcharodontosaurids (e.g., Carcharodontosaurus: SGM-Din 1; Giganotosaurus: 

MUCPv-CH-1; Mapusaurus: Coria & Currie, 2006). Although often considered a 

synapomorphy of allosauroids, a nasal antorbital fossa is also present in the basal 

theropods Cryolophosaurus (Smith et al., 2007) and Dilophosaurus (Smith et al., 2007).  

Additionally, a narrow fossa contiguous with the maxillary and lacrimal antorbital fossa 

surrounds a large nasal pneumatopore in the abelisaurid Majungasaurus (Sampson & 

Witmer, 2007). The nasal contribution to the fossa in Monolophosaurus is extensive and 
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excavated by several pneumatic openings. Two small pneumatopores are present ventral 

to the most posterior swelling described above (Figs. 1, 3, nfor); the anterior opening is 

17 mm long anteroposteriorly and 7 mm deep dorsoventrally, whereas the posterior 

foramen is 21 by 5 mm. These anteroposteriorly-elongate foramina are tear-drop shaped, 

and are overhung dorsally by the swelling. Posterior to these small foramina are two 

enormous fenestrae that likely opened medially (Zhao & Currie, 1993) and completely 

pierced the nasal crest (Figs. 1, 3, nfen). Both fenestrae are oval-shaped with a 

posterodorsally-oriented long axis (60 mm for the anterior opening, 55 mm for the 

posterior one). The posterior fenestra is bounded posteriorly by the upturned and dorsally 

extended process of the lacrimal. Ventral to these openings the nasal antorbital fossa is 

smooth and continuous with the fossa on the maxilla and lacrimal. 

 The pattern of nasal pneumaticity is similar on both sides of the skull and is 

autapomorphic for Monolophosaurus. Although pneumatopores are apparently absent in 

Ceratosaurus (Madsen & Welles, 2000), Cryolophosaurus (Smith et al., 2007), and 

Zupaysaurus (Ezcurra, 2007), some basal theropods exhibit lateral openings penetrating 

the nasal. The number of pneumatic openings in many theropods is two (e.g., 

Giganotosaurus: MUCPv-CH-1; Mapusaurus: Coria & Currie, 2006; Sinraptor: Currie & 

Zhao, 1993), whereas Majungasaurus and Neovenator possess one (Sampson & Witmer, 

2007; Brusatte et al., 2008) and Allosaurus variably exhibits one, two, or three (Currie & 

Zhao, 1993). Unfortunately, nasals are missing for many basal theropods, precluding 

broader comparisons. Most important, no other theropod possesses the two enlarged and 

equal-sized fenestrae of Monolophosaurus. The most similar condition is seen in 

Guanlong, in which four large fenestrae of varying sizes are present (Xu et al., 2006). 
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The two smaller anterior pneumatopores of Monolophosaurus are similar in size, form, 

and location to the pneumatic openings of other theropods, but we hesitate to homologize 

these structures pending a more detailed study of nasal pneumaticity. CT scans briefly 

discussed by Zhao & Currie (1993) show that the nasals of Monolophosaurus are 

extensively pneumatized, rendering the nasal almost completely hollow internally. 

However, a median septum is clearly visible, in contrast with Majungasaurus, which also 

exhibits rugose, extensively pneumatized, and fused nasals with no median septum 

(Sampson & Witmer, 2007).  

 
Lacrimal: The lacrimal of Monolophosaurus is also modified to participate in the cranial 

crest (Figs. 1-4). This bone does not take the shape of an inverted L in lateral view as in 

most theropods, but rather resembles a sideways T, due to an autapomorphic dorsal 

projection that forms the posterolateral region of the crest (Figs. 1-4, ldp). The other 

processes comprising the lacrimal include anterior and ventral rami that are broadly 

similar to those of other theropods. The anterior ramus is 100 mm long, curves ventrally 

as it continues anteriorly, and is marked by a concave ventral margin. The ventral ramus 

is 95 mm dorsoventrally deep; it is 22 mm anteroposteriorly long at its narrowest 

constriction at the centre of the orbit and fans out to a length of 77 mm ventrally where it 

meets the jugal. The posterior margin is concave for most of its length, but becomes 

slightly convex ventrally, thus constricting the orbit. This constriction was interpreted as 

the attachment of Ligamentum suborbitale by Currie & Zhao (1993), and likely 

represents the ventral limit of the eyeball in life. In Monolophosaurus it is less distinct 

and positioned farther ventrally than in many other large theropods (e.g., 

Acrocanthosaurus: Currie & Carpenter, 2000; Cryolophosaurus: Smith et al., 2007; 
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Majungasaurus: Sampson & Witmer, 2007; Sinraptor: Currie & Zhao, 1993). The 

anterior and ventral rami meet at an angle of approximately 70 degrees as in many large 

theropods, and are not nearly perpendicular as in Dubreuillosaurus (Allain, 2002), 

Torvosaurus (Britt, 1991), Zupaysaurus (Ezcurra, 2007), and coelophysids. 

 Articular surfaces with the maxilla, nasal, jugal, and prefrontal, are partially 

visible. The anterior ramus is overlapped by the ascending ramus of the maxilla anteriorly 

and contacts the nasal dorsally via a long suture. The nasal slightly overhangs the 

lacrimal along this suture, and both elements are smoothly excavated in this region by the 

antorbital fossa. Additionally, the medial surface of the dorsal expansion contacts the 

lateral surface of the nasal. The ventral ramus expands ventrally to overlap the jugal, 

resulting in a dorsally convex suture in lateral view. Finally, the prefrontal abuts a notch 

in the posterior margin of the lacrimal, which arises as a result of the slight posterior 

expansion of the dorsal sheet-like process relative to the lacrimal body. The prefrontal 

excludes the lacrimal from contacting the postorbital dorsal to the orbit, as is the case in 

carcharodontosaurids (e.g., Sereno et al., 1996; Sereno & Brusatte, 2008) and 

abelisaurids (e.g., Sampson & Witmer, 2007). 

 In lateral view, a large rugosity rises from the region immediately anterodorsal to 

the orbit where the various rami of the lacrimal meet. This rugosity is heavily striated and 

slightly overhangs the anterior and ventral rami laterally. Anterior to this rugosity the 

anterior ramus is excavated by the antorbital fossa, which also envelops much of the 

anterior margin of the ventral process. However, these regions of the antorbital fossa are 

not contiguous, and are instead separated by a rugose anterior process of the ventral 

ramus that projects into the posterodorsal corner of the antorbital fenestra. The portion of 
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the antorbital fossa on the anterior ramus is not penetrated by any visible pneumatic 

openings. Therefore, Monolophosaurus differs from most theropods (e.g., Afrovenator, 

Allosaurus, Ceratosaurus, Cryolophosaurus, Ornitholestes, Torvosaurus, Sinraptor, 

Zupaysaurus; see review in Ezcurra & Novas, 2007), but is similar to coelophysids, 

which lack extensive lacrimal pneumaticity. Abelisaurids (e.g., Majungasaurus: Sampson 

& Witmer, 2007) are characterized by a large pneumatopore that is only visible medially. 

Since the medial surface of the lacrimal is not visible in Monolophosaurus this condition 

cannot be ruled out. 

 The dorsal tab-like expansion of the lacrimal is an autapomorphy of 

Monolophosaurus (Figs. 1-4, ldp). This rectangular, thin process extends 70 mm dorsal to 

the lacrimal body, is slightly expanded anteriorly at its dorsal tip, and slopes medially, 

such that it is strongly offset medially from the remainder of the lacrimal. The lateral 

surface of the process is heavily rugose, especially along its posterior margin, and 

ornamented by numerous dorsoventrally and anteroposteriorly-trending striations. This 

process reaches the top of the crest on the right side but falls approximately eight 

millimetres short on the left, a feature not likely due to preservation.  

Dorsal expansions characterize the lacrimals of many theropods but differ in 

detail. Allosauroids (e.g., Acrocanthosaurus: Currie & Carpenter, 2000; Sinraptor: Currie 

& Zhao, 1993) typically possess a raised dorsal margin of the lacrimal, which is 

elaborated into a pronounced “hornlet” in Allosaurus (Madsen, 1976). A similar hornlet 

is also seen in Ceratosaurus (Madsen & Welles, 2000) and some tyrannosaurids (Currie, 

2003), and a much lower eminence is present in some spinosauroids, such as 

Eustreptospondylus (Sadlier et al., 2008) and Torvosaurus (Britt, 1991). 
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Cryolophosaurus possesses a unique morphology in which the lacrimals expand dorsally 

into a transverse, fluted crest (Smith et al., 2007), and Dilophosaurus is characterized by 

an extreme sheet-like dorsal expansion of the lacrimals (Welles, 1984). This latter 

condition is most similar to that in Monolophosaurus. However, the entire dorsal margin 

of the lacrimal is expanded in Dilophosaurus, whereas only the margin immediately 

above the preorbital bar is expanded in Monolophosaurus. Thus, unlike in 

Dilophosaurus, the dorsal expansion of Monolophosaurus takes the form of a discrete 

tab-like projection, and the anterior ramus is unexpanded dorsally and of a more typical 

theropod morphology. 

 

Postorbital: The postorbital is T-shaped as in most theropods, and comprised of anterior, 

posterior, and ventral rami (Figs. 1-4). The anterior ramus is shaped like a blunt triangle, 

and turns strongly medially as it extends anteriorly. This process is 30 mm long and 

forms most of the posterodorsal border of the orbit. It contacts the frontal medially via the 

powerfully inturned anterior margin of the ramus, as in many basal theropods (e.g., 

Ceratosaurus: Madsen & Welles, 2000; Cryolophosaurus: Smith et al., 2007; 

Zupaysaurus: Ezcurra, 2007; coelophysids: Colbert, 1989). The anterior ramus is also 

oriented medially in Allosaurus (Madsen, 1976) and Sinraptor (Currie & Zhao, 1993), 

but both taxa exhibit a rugose bulge that extends anteriorly and nearly contacts the 

lacrimal. This rugosity is freestanding and separated from the frontal, prefrontal, and 

remainder of the anterior ramus by a notch, and is clearly absent in Monolophosaurus. 

Carcharodontosaurids (e.g., Sereno et al., 1996; Coria & Currie, 2006; Sereno & 

Brusatte, 2008) and abelisaurids (Sampson & Witmer, 2007) exhibit a more extreme 
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condition in which the postorbital and lacrimal meet above the orbit, and thus the anterior 

ramus meets both the lacrimal anteriorly and the frontal medially.  

 The posterior ramus extends for 55 mm posteriorly and contributes to the dorsal 

margin of the lateral temporal fenestra. It takes the form of a gracile, elongate triangle, 

which is 22 mm dorsoventrally deep at its base and tapers to a point posteriorly. The 

ventral margin of this process is strongly concave ventrally and the entire process is 

deflected slightly ventrally. Medially, this process articulates with a lateral groove on the 

squamosal. Along this articulation the posterior ramus is entirely exposed laterally, a 

condition seen in many (e.g., Afrovenator, Acrocanthosaurus, Allosaurus, 

Dubreuillosaurus, Zupaysaurus) but not all (e.g., Sinraptor) basal theropods. 

 The ventral ramus is 120 mm deep dorsoventrally and slightly anteroventrally 

inclined. It contacts the jugal ventrally via a slightly laterally facing groove, which trends 

anteroventrally. This articulation begins at the posteroventral margin of the orbit, and as a 

result the postorbital reaches the floor of the orbit (Figs. 1-2). This morphology is also 

seen in many basal theropods (e.g., Afrovenator, Dilophosaurus, Dubreuillosaurus, 

Zupaysaurus), but contrasts with the condition in Ceratosaurus, most abelisaurids 

(Sampson & Witmer, 2007), and allosauroids (Currie & Carpenter, 2000; Currie & Zhao, 

1993; Madsen, 1976; Sereno et al., 1996), in which the postorbital-jugal articulation 

begins well dorsal to the ventral floor of the orbit, thus excluding the postorbital from this 

margin.  

Unremoved matrix remains between the postorbital and the jugal at their 

articulation. As such, it is not possible to determine whether the cross-section of the 

ventral process is U-shaped as in spinosauroids or triangular as in other non-
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coelurosaurian theropods (Sereno et al., 1996; Rauhut, 2003). The posterior margin of the 

ventral process of the postorbital is slightly convex until reaching the jugal articulation, at 

which point it becomes concave to meet the jugal. The anterior margin is concave for 

most of its length, but is marked by a slight suborbital projection approximately 40 mm 

from the floor of the orbit (Fig. 2D, sop). This projection is similar to that in Sinraptor 

(IVPP 10600; Currie & Zhao, 1993), and differs from the more pronounced and discrete 

projections of carcharodontosaurids (Sereno et al., 1996; Chure 2000; Sereno & Brusatte, 

2008). Like the corresponding process on the posterior margin of the lacrimal, this 

projection would have served to delimit the ventral extent of the eyeball. Its ventral 

position in Monolophosaurus indicates that the eyeball was much larger in this taxon than 

in allosauroids (Currie & Zhao, 1993). 

 The lateral surface of the postorbital is slightly rugose in the region where the 

three rami meet (“postorbital body”). This rugosity continues down the anterior margin of 

the ventral process, whereas the posterior edge of the ventral process and the entire 

posterior process are weakly excavated by a smooth fossa surrounding the lateral 

temporal fenestra (Fig. 2D, por, ltfos). This fossa also extends onto adjacent 

circumtemporal bones, and is demarcated by a very slight change in bone texture. 

Although the anterior process and postorbital body are somewhat sculptured, they do not 

exhibit the pronounced rugose texture characteristic of abelisaurids and allosauroids, 

which expand into the anterior rugosities of Allosaurus and Sinraptor described above 

and reach an extreme state in the bulbous orbital “brows” of carcharodontosaurids 

(Sereno et al., 1996; Coria & Currie, 2006; Sereno & Brusatte, 2008). Instead, the 

postorbital sculpturing of Monolophosaurus is similar to that in many other basal 
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theropods (e.g., Afrovenator, Ceratosaurus, Cryolophosaurus, Dubreuillosaurus, 

Torvosaurus, Zupaysaurus, coelophysids). 

 Dorsally, the anterior process and postorbital body extend into a medial sheet that 

contacts the frontal and a narrow wing of the parietal (Fig. 4). The posterior region of the 

dorsal surface of the postorbital body and the anteromedial corner of the posterior ramus 

are smoothly excavated by the supratemporal fossa (Fig. 4, stfos). This portion of the 

fossa is continuous with the supratemporal fossa on the frontal and demarcated anteriorly 

by an arched ridge. 

 

Prefrontal: The prefrontal is a small element in Monolophosaurus (Fig. 1-4). It is 

rectangle-shaped in dorsal view, wedged between the lacrimal and the frontal, and 

articulates with the nasal medially. The prefrontal contacts only the anterior margin of the 

frontal and does not appear to make contact with the lateral margin as in most basal 

theropods (Fig. 4), which is likely correlated with the unique anteroposteriorly-shortened 

frontals that are autapomorphic of Monolophosaurus. Anteriorly the prefrontal contacts 

the lacrimal in a transversely-straight suture. The lateral margins of both the prefrontal 

and lacrimal are strongly upturned and rugose at this contact. The prefrontal broadly 

contributes to the dorsal orbit rim, and is more exposed laterally than the prefrontals of 

Allosaurus (Madsen, 1976) and Sinraptor (Currie & Zhao, 1993), as well as the heavily 

modified elements of abelisaurids and carcharodontosaurids which are hidden laterally by 

a postorbital-lacrimal articulation and likely fused to the lacrimal (Sereno et al., 1996; 

Sampson & Witmer, 2007; Sereno & Brusatte, 2008). 
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Jugal: The jugal is tetraradiate as in most basal theropods (Figs. 1-2). It is comprised of 

anterior and posterior rami, as well as separate dorsal rami for articulation with the 

lacrimal and postorbital (here termed the lacrimal and postorbital rami, respectively). The 

entire element is 235 mm long anteroposteriorly, and forms the ventral margin of the 

orbit and much of the ventral margin of the lateral temporal fenestra, and also makes a 

narrow contribution to the posteroventral corner of the antorbital fenestra. 

 The anterior ramus is 120 mm long, and extends from the posterior margin of the 

antorbital fenestra to the ventral margin of the orbit. It meets the maxilla anteriorly via a 

posteroventrally-inclined articulation, which narrowly excludes the lacrimal from 

contacting the maxilla in this region (Fig. 2D). A similar morphology is seen in many 

basal theropods (e.g., abelisaurids: Sampson & Witmer, 2007; allosauroids: Currie & 

Zhao, 1993, Sereno et al., 1996, Currie & Carpenter, 2000; Afrovenator: Sereno et al., 

1994; Dilophosaurus: Welles, 1984), whereas other taxa exhibit a broad maxilla-lacrimal 

contact in this region (Allosaurus: Madsen, 1976; Ceratosaurus: Madsen & Welles, 

2000; Torvosaurus: Britt, 1991; Zupaysaurus: Ezcurra, 2007; coelophysids: Colbert, 

1989). The jugal of Monolophosaurus contributes to the posteroventral margin of the 

antorbital fenestra, as in other taxa without a maxilla-lacrimal contact (Fig. 2D). 

However, this contribution is slight in Monolophosaurus, measuring approximately 20 

mm. A similar condition is figured in Afrovenator (Sereno et al., 1994:fig 2), and differs 

from the much more extensive jugal contributions to the antorbital fenestra seen in most 

other taxa.   

The dorsal margin of the anterior ramus rises slightly dorsally into the plate-like 

lacrimal ramus, which meets the lacrimal in an approximately horizontal butt joint. This 
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ramus is dorsoventrally short as in Acrocanthosaurus (Currie & Carpenter, 2000), 

Afrovenator (Sereno et al., 1994), Carcharodontosaurus (Sereno et al., 1996), 

Ceratosaurus (Madsen & Welles, 2000; Sampson & Witmer, 2007), Zupaysaurus 

(Ezcurra, 2007), and coelophysids (Colbert, 1989), whereas it is more dorsoventrally 

expanded in Allosaurus (Madsen, 1976), Carnotaurus (Bonaparte et al., 1990), 

Dilophosaurus (Welles, 1984), Majungasaurus (Sampson & Witmer, 2007), and 

Sinraptor (Currie & Zhao, 1993).  

The postorbital ramus extends 80 mm dorsally to meet the postorbital via an 

elongate scarf joint. This articulation is slightly laterally exposed dorsally, but ventrally 

the postorbital wraps around the jugal to articulate with the medial surface of the ramus, 

similar to the condition described in Sinraptor (Currie & Zhao, 1993). In 

Monolophosaurus the postorbital ramus is shaped like an elongate triangle that is slightly 

inclined posteriorly; it is 25 mm long anteroposteriorly at its base but tapers dorsally to a 

thickness of seven millimeters. This process is only narrowly separated from the lacrimal 

ramus, thereby resulting in a narrow ventral margin of the orbit, which essentially tapers 

to a point. As in most theropods the postorbital ramus is slender, not anteroposteriorly 

expanded and plate-like as in Acrocanthosaurus (Currie & Carpenter, 2000), 

Cryolophosaurus (Smith et al., 2007), and Torvosaurus (Britt, 1991). Moreover, the 

postorbital ramus of Monolophosaurus does not contact the squamosal and constrict the 

lateral temporal fenestra as described in Cryolophosaurus (Smith et al., 2007). 

The posterior ramus is 75 mm long and bifurcates posteriorly to receive the 

anterior ramus of the quadratojugal. The dorsal prong forms most of the concave ventral 

border of the lateral temporal fenestra, and is much shorter than the ventral prong, as it 



 30 

only extends 40 mm posteriorly. The dorsal prong is also shortened in most basal 

theropods (e.g., Acrocanthosaurus: Currie & Carpenter, 2000; Allosaurus: Madsen, 1976; 

Coelophysis: Ezcurra, 2007; Sinraptor: Currie & Zhao, 1993; Zupaysaurus: Ezcurra, 

2007), whereas the prongs are of approximately equal length in Ceratosaurus (Madsen & 

Welles, 2000) and abelisaurids (Sampson & Witmer, 2007).  

 Externally, the lateral surface of the jugal is strongly convex ventral to the orbit, a 

condition seen in other theropods with jugal pneumaticity (e.g., Carcharodontosaurus: 

SGM-Din 1; Sinraptor: IVPP 10600), but absent in those theropods without pneumatic 

jugals (e.g., Allosaurus: Madsen, 1976; Ceratosaurus: Madsen & Welles, 2000; 

Cryolophosaurus: FMNH PR1821; Majungasaurus: FMNH PR 2100, Sampson & 

Witmer, 2007; Zupaysaurus: Ezcurra, 2007). The lateral surface of this convex region is 

generally smooth and is not expanded into a rugose boss. However, a slightly rugose 

depression is present ventral to the postorbital ramus (Fig. 2D, jrug), and the posterior 

ramus is marked by numerous fine, anteroposteriorly-inclined striations.  

The anterior portion of the lacrimal ramus and the anterodorsal region of the 

anterior ramus are smoothly excavated by the antorbital fossa. The ventral rim of the 

fossa is sharp and approximately straight horizontally, and floors a small pneumatopore 

in the posteroventral corner of the fossa (Fig. 1, 2D, jfor). This oval-shaped 

pneumatopore opens anterodorsally into the fossa, and is much larger on the left side. 

Pneumatopores of a similar morphology and position are known in other basal theropods, 

and jugal pneumaticity is considered a synapomorphy of Tetanurae by some authors (e.g., 

Sereno et al., 1996; Allain, 2002). External evidence of pneumaticity is lacking in 

Ceratosaurus (Madsen & Welles, 2000), Cryolophosaurus (Smith et al., 2007), 
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Dilophosaurus, Zupaysaurus, and abelisaurids (Sampson & Witmer, 2007), but is present 

in most allosauroids and some coelurosaurs (Sereno et al., 1996, Holtz et al., 2004). 

Allain (2002) describes evidence of jugal pneumaticity in Dubreuillosaurus, but the 

specimen (MNHN 1998-13 RJN 10) is heavily weathered and the more complete right 

jugal (RJN 11) is not swollen laterally. Similarly, Sereno et al. (1994) describe and figure 

a jugal pneumatopore in Afrovenator, but our observation of casts (UC OBA 1) confirms 

that the jugal was not pneumatic, as no clear pneumatopore is visible and the element is 

plate-like, not strongly swollen as in all theropods with jugal pneumaticity.   

An additional opening, which may be pneumatic in nature, is present on the 

lacrimal ramus of the right jugal (Fig. 2D, 3, jaf). This opening takes the form of a 

distinct, deep circular excavation that is bordered ventrally by a narrow fossa. It has a 

diameter of nine millimeters, and is thus much larger than the pneumatopore in the 

posteroventral corner of the antorbital fossa, which only has a diameter of three 

millimeters on the right side. This accessory opening is absent on the left jugal, which is 

penetrated by a much larger single pneumatopore, and to our knowledge has not been 

reported in other theropods. However, given the variability of pneumatic features and its 

presence on only one side of the skull, we hesitate to regard this opening as an 

autapomorphy of Monolophosaurus. 

The ventral margin of the jugal is concave for a small length anteriorly before 

expanding into a convex cornual process underneath the orbit (Fig. 2D, jcp). Although 

this process is sculptured by dorsoventrally-oriented striations it is not as rugose or 

distinct as in tyrannosaurids (Carr, 1999). A similar process is present in other basal 

theropods, and differs from the more expansive and bulbous cornual projection of 



 32 

Allosaurus (Madsen, 1976). Posterior to this process the ventral margin becomes concave 

again in the region of its contact with the quadratojugal. 

 
Quadratojugal: The quadratojugal is roughly L-shaped as in most theropods, and forms 

much of the posterior and ventral margins of the lateral temporal fenestra (Figs. 1, 2, 5). 

It is comprised of two principal processes: a dorsal ramus that contacts the squamosal and 

quadrate and an anterior ramus that articulates with the jugal. Additionally, the 

posteroventral corner of the quadratojugal projects slightly posteriorly and almost 

completely covers the condyles of the quadrate laterally in the region of the jaw 

articulation. However, this projection does not take the form of a discrete, tab-like 

process as in Acrocanthosaurus (Currie & Carpenter, 2000), Allosaurus (Madsen, 1976), 

and some abelisaurids (Carnotaurus: Bonaparte et al., 1990; Majungasaurus: Sampson & 

Witmer, 2007). 

 The dorsal ramus is broad and slightly expands dorsally, unlike the dorsally-

tapering condition of Dubreuillosaurus (Allain, 2002) and coelophysids (Tykoski & 

Rowe, 2004). Both anterior and posterior margins are concave as in most theropods. In 

contrast, the anterior margin of some abelisaurids is convex (Sampson & Witmer, 2007). 

The dorsal ramus of Monolophosaurus is oriented anterodorsally at an angle 

approximately 25 degrees from vertical. As a result, it protrudes anteriorly into the lateral 

temporal fenestra, thus constricting the fenestra at midheight (Fig. 5, pro). Most of this 

constriction is formed by the corresponding anteroventrally-oriented ventral ramus of the 

squamosal, which contacts the quadratojugal in this region. This contact takes the form of 

a 37-mm-long, posterodorsally-inclined, rugose suture that is nearly coossified (Fig. 5). 

Broad contact between the squamosal and quadratojugal is seen in most theropods, 
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including Zupaysaurus (Ezcurra, 2007), allosauroids (Madsen, 1976; Currie & Zhao, 

1993; Currie & Carpenter, 2000), and apparently spinosauroids (Allain, 2002; Sues et al., 

2002) and Cryolophosaurus (Smith et al., 2007). However, many basal theropods exhibit 

only slight contact or lack such contact altogether (e.g., Ceratosaurus: Madsen & Welles, 

2000; Dilophosaurus: Welles, 1984; abelisaurids: Sampson & Witmer, 2007; 

coelophysids: Tykoski & Rowe, 2004), a morphology also seen in Eoraptor (Sereno et 

al., 1993) and Herrerasaurus (Sereno & Novas, 1993). 

 Posterior to the quadratojugal-squamosal contact the quadrate cotylus is exposed 

laterally, and its anterior margin contacts the dorsal ramus of the quadratojugal (Fig. 5, 

q). However, ventral to this exposure the quadrate twists such that its anterolateral margin 

articulates with the medial surface of the dorsal ramus of the quadratojugal. The quadrate 

is hidden in lateral view across this contact, but again becomes exposed laterally for a 

slight 6-mm-long margin at the posteroventral corner of the quadratojugal. Thus, contra 

the reconstruction of Zhao & Currie (1993:fig 1), it is the quadrate that forms the 

posteroventral corner of the cranium in lateral view (Fig. 5, q). Although the 

quadratojugal approaches the jaw articulation it does not contribute to it, similar to the 

condition in other theropods.   

 The anterior ramus projects 94 millimeters anteriorly, to a point level with the 

midpoint of the ventral ramus of the postorbital (Fig. 2). Therefore, this ramus projects 

farther anteriorly than the anterior margin of the lateral temporal fenestra as in 

Dilophosaurus (Welles, 1984) and Zupaysaurus (Ezcurra, 2007). However, this is unlike 

the condition in most other basal theropods (e.g., Allosaurus: Madsen, 1976; 

Cryolophosaurus: Smith et al., 2007; Dubreuillosaurus: Allain, 2002; Sinraptor: Currie 
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& Zhao, 1993; coelophysids: Tykoski & Rowe, 2004), in which the anterior ramus 

terminates ventral to the lateral temporal fenestra. The anterior rami of Ceratosaurus 

(Madsen & Welles, 2000, Sampson & Witmer, 2007) and Majungasaurus (Sampson & 

Witmer, 2007) are greatly expanded and nearly extend anterior to the lateral temporal 

fenestra, but fall slightly short. In Monolophosaurus the anterior ramus tapers to a narrow 

point anteriorly, where it is wedged between the dorsal and ventral prongs of the 

posterior ramus of the jugal. A similar morphology is seen in Ceratosaurus (Sampson & 

Witmer, 2007), Dilophosaurus (Welles, 1984), Dubreuillosaurus (Allain, 2002), 

Sinraptor (Currie & Zhao, 1993), Zupaysaurus (Ezcurra, 2007), and coelophysids 

(Tykoski & Rowe, 2004). In contrast, the anterior ramus of Acrocanthosaurus (Currie & 

Carpenter, 2000), Allosaurus (Madsen, 1976), and abelisaurids is deeper and does not 

strongly taper anteriorly (Sampson & Witmer, 2007). 

 The lateral surface of the quadratojugal is generally smooth and unsculptured. An 

anterodorsally-oriented step, beginning 25 mm ventral to the anterior point of the 

squamosal contact, demarcates a shallow fossa surrounding the lateral temporal fenestra 

(Figs. 2, 5, ltfos). This fossa continues ventrally on the ventral ramus and excavates the 

anterodorsal corner of the anterior ramus. Here it dissipates anteriorly, such that its 

ventral border becomes confluent with the dorsal margin of the anterior ramus. Thus, the 

fossa continues anteriorly on the dorsal prong of the posterior ramus of the jugal but is 

not present on the anterior process of the quadratojugal for most of its length. 

 

Squamosal: The squamosal (Figs. 1, 2, 5) is comprised of three principal processes 

visible in lateral view: an anterior ramus that bifurcates to articulate with the postorbital, 
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a ventral ramus that articulates with the quadratojugal and quadrate, and a downturned 

posterior ramus that also contacts the quadrate. As in many basal theropods, the “dorsal” 

surface of the squamosal is oriented posterodorsally. In Monolophosaurus the dorsal 

surface is angled at approximately 45 degrees posteriorly from the remainder of the skull 

roof, and as a result the ventral ramus projects anteriorly into the lateral temporal fenestra 

(Fig. 5, pro) and the posterior ramus is oriented nearly ventrally, a condition exaggerated 

by the downturned distal end of this process (Fig. 5, sqpp). However, for ease of 

comparison with other theropods, we use traditional terms such as “dorsal surface” and 

“ventral ramus.” 

 The anterior process is 57 mm long and bifurcates anteriorly to articulate with the 

posterior ramus of the postorbital. This bifurcation divides the anterior process into 

separate dorsal and ventral prongs across its entire length. These prongs extend anteriorly 

to the same level, and terminate at the anterior margin of the lateral temporal fenestra. 

Thus, it is the squamosal that forms the entire dorsal margin of the fenestra. The dorsal 

surface of the ventral prong becomes prominent posteriorly and gives rise to a thin ridge 

that overhangs the remainder of the squamosal by approximately four millimeters (Fig. 5, 

sqs). This ridge is laterally-facing as in most theropods, not downturned as is 

autapomorphic for Eustreptospondylus (OUMNH J.13558; Sadlier et al., 2008). Ventral 

to this ridge the ventral prong is extensively excavated by a deep fossa, which continues 

ventrally before terminating against an anteroventrally-oriented step on the dorsal portion 

of the ventral process. This fossa is deepest immediately ventral to the ridge, and 

surrounds much of the squamosal contribution to the lateral temporal fenestra. The dorsal 

prong is marked by numerous linear striations that generally follow the long axis of the 
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ramus. This prong forms the posterior region of the lateral margin of the supratemporal 

fenestra. 

 As described above, the ventral ramus is oriented anteroventrally, and makes 

contact with the quadratojugal and the quadrate cotylus, which fits in between this ramus 

and the downturned posterior ramus. The ventral process is anteroposteriorly expanded 

and plate-like, and makes broad contact with the quadratojugal. Immediately posterior to 

this contact, the quadrate articulates with the ventral process for approximately seven 

millimeters, following the same trend as the quadratojugal contact. 

Together, the inclined ventral ramus of the squamosal and dorsal ramus of the 

quadratojugal project into the lateral temporal fenestra, constricting this opening to 

approximately 60% of its maximum anteroposterior length (Fig. 5, pro). Most of this 

constriction is formed by the ventral ramus of the squamosal, which projects so strongly 

anteriorly (approximately 40 degrees from vertical) that the quadratojugal articulates with 

a bone surface that appears to be equivalent to the posterior margin of this ramus in more 

basal theropods (e.g., Ceratosaurus: Sampson & Witmer, 2007; abelisaurids: Sampson & 

Witmer, 2007; coelophysids: Colbert, 1989; Tykoski & Rowe, 2004). A similar condition 

is present in Zupaysaurus (Ezcurra, 2007), but differs from the morphology in other basal 

theropods with a constricted lateral temporal fenestra. In these taxa (e.g., 

Acrocanthosaurus: Currie & Carpenter, 2000; Allosaurus: Madsen, 1976) the articulating 

processes on the squamosal and quadratojugal project into the fenestra to the same degree 

and the quadratojugal clearly articulates with the ventral margin of the ventral ramus of 

the squamosal. The ventral ramus of Monolophosaurus is marked by a small kink (Figs. 
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2D, 5 sqk), which is not as pronounced as the autapomorphic process of Zupaysaurus 

(Ezcurra, 2007:fig 3). A similar kink is unknown in other basal theropods.  

 The posterior ramus projects posteroventrally and turns slightly anteriorly at its 

distal end (Fig. 5, sqpp). This process is smaller than the ventral ramus, measuring 15 

mm in maximum length in lateral view (compared to 20 mm for the ventral ramus), and 

terminates 15 mm dorsally to the ventral ramus. This contrasts with the condition in 

Acrocanthosaurus (Currie & Carpenter, 2000), Allosaurus (Madsen, 1976), and 

Ceratosaurus (Sampson & Witmer, 2007), in which the posterior ramus is expanded and 

downturned to such a degree that it extends to the same ventral level as the ventral 

process. Monolophosaurus also differs from coelophysids (Tykoski & Rowe, 2004) and 

abelisaurids (Sampson & Witmer, 2007), in which this ramus generally is rod-like and 

projects posteriorly, sometimes with a slight downturn. Instead, the morphology of 

Monolophosaurus is broadly similar to that in Afrovenator (Sereno et al., 1994), 

Dilophosaurus (Welles, 1984), Dubreuillosaurus (Allain, 2002), Sinraptor (Currie & 

Zhao, 1993), and Zupaysaurus (Ezcurra, 2007), in which the posterior ramus is slightly 

expanded and moderately downturned.  

 Unfortunately, the articulated nature of the skull precludes detailed observation of 

the articular surfaces for the parietal and paroccipital processes. However, it is clear that 

the squamosal only makes slight contact with the parietal medially (Zhao & Currie, 

1993:fig 1). In fact, in posterior view, the squamosal and parietal are almost entirely 

separated by a narrow cleft extending posteroventrally from the supratemporal fenestra. 

This cleft may represent a remnant of the posttemporal fenestra, an opening between the 

parietal, squamosal, and paroccipital processes in many sauropsids that may have housed 
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the dorsal head vein (Sampson & Witmer, 2007). This opening is reduced in dinosaurs 

primitively (Benton, 2004) and entirely lost in most dinosaurs, but appears to be present 

as a small remnant in Majungasaurus (Sampson & Witmer, 2007). 

 
Frontal: As with other skull elements, few details of the frontal can currently be observed 

due to the embedded mount. However, photographs taken before the mounting of the 

specimen reveal the frontal to be a highly unique and autapomorphic element in 

Monolophosaurus (Zhao & Currie, 1993:fig 1). Uniquely among theropods, the 

associated frontals of Monolophosaurus are rectangular in dorsal view and much wider 

than long, with a width:length ratio of 1.67. Associated frontals that are wider than long 

are sometimes considered a synapomorphy of Neotetanurae (Allosauroidea + 

Coelurosauria; e.g., Smith et al., 2007). However, the condition in Monolophosaurus is 

extreme compared to basal neotetanurans, as taxa such as Acrocanthosaurus, Allosaurus, 

and Sinraptor possess frontals only slightly wider than long (width:length ratios between 

1.05-1.35). Furthermore, frontals in these taxa are generally triangular, and taper in width 

somewhat anteriorly. Thus, the wide, rectangular frontals of Monolophosaurus are 

autapomorphic. 

 In dorsal view, the frontal is relatively flat and unsculptured, unlike the nasals, 

lacrimals, and premaxillae that comprise the cranial crest. The anterior edge of the frontal 

does rise slightly anteriorly to articulate with the nasals (Figs. 3, 4, fcr), but for the most 

part does not contribute to the crest. The posterolateral corner of the frontal is excavated 

by the supratemporal fossa, which is widely exposed in dorsal view (Fig. 4, stfos), unlike 

the condition in derived carcharodontosaurids (Coria & Currie, 2002; Brusatte & Sereno, 

2007). Posteriorly the frontal meets the parietal in a transversely-straight suture, and 
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laterally contacts the postorbital via a parasagitally-straight articulation. The anterolateral 

corner contacts the prefrontal and makes a narrow contribution to the orbital rim (Figs. 

2D, 3, 4, forb). The interfrontal suture is open and nearly straight sagitally. 

 
Parietal: As with the frontal, only some details of the parietal are visible in the current 

mount. This element is hourglass-shaped in dorsal view, due to supratemporal fenestrae 

that extend far medially. In lateral view, a low midline crest is visible, which rises to a 

point dorsal to the level of the postorbital-squamosal articulation. The condition in 

Monolophosaurus appears broadly similar to that in Ceratosaurus (Madsen & Welles, 

2000) and Zupaysaurus (Ezcurra, 2007), which possess a distinct but low eminence. In 

contrast, a more pronounced and mound-like bulge is present in Acrocanthosaurus 

(Currie & Carpenter, 2000), Allosaurus (Madsen, 1976), Sinraptor (Currie & Zhao, 

1993), carcharodontosaurids (Carcharodontosaurus: SGM-Din 1; Giganotosaurus: Coria 

& Currie, 2002), and abelisaurids (Bonaparte et al., 1990, Sampson & Witmer, 2007), in 

which it forms a knob-like projection. However, although small, the midline crest of 

Monolophosaurus clearly differs from the condition in some basal theropods (e.g., 

Dubreuillosaurus: Allain, 2002), in which the dorsal surface of the parietal is flat and 

completely lacks a crest. In posterior view, the parietal is exposed broadly on the occiput, 

rises above the supraoccipital, and seems to give rise to a tongue-like process that 

overlaps the supraoccipital posterodorsally. Openings along the parietal-supraoccipital 

suture on both sides of the midline likely represent passage for the dorsal head vein 

(Larsson, 2001). 
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Braincase: The articulated nature of the skull only allows limited observation of the 

braincase (Fig. 6). Although not visible in the present mount, the occipital region 

(posterior view) was photographed by PJC and illustrated (Zhao & Currie, 1993:fig 1) 

before mounting. Parts of the lateral wall of the braincase are also visible inside the 

lateral temporal fenestra, although obstructed ventrally by the quadrate, pterygoid, and 

epipterygoid (Fig. 6). 

 The supraoccipital is broadly exposed on the occiput, and rises dorsally into a 

triangular wedge that nearly reaches the top of the nuchal crest of the parietal. Sutural 

contacts with the parietal and exoccipital-opisthotic are visible, and the supraoccipital 

markes a narrow contribution to the dorsal rim of the foramen magnum. The 

supraoccipital also reaches the foramen magnum in many basal theropods (e.g., 

Acrocanthosaurus: OMNH 10146; Allosaurus: UMNH VP 16606; Baryonyx: Charig & 

Milner, 1997; Dubreuillosaurus: Allain, 2002; Giganotosaurus: Coria & Currie, 2002; 

Majungasaurus: Sampson & Witmer, 2007; Piatznitzkysaurus: Rauhut, 2004; 

Piveteausaurus Taquet & Welles, 1977; Sinraptor: Currie & Zhao, 1993), but is excluded 

from the rim in Cryolophosaurus (Smith et al., 2007), Dilophosaurus (Welles, 1984), and 

coelophysids (Raath, 1977; Colbert, 1989). 

 The occipital condyle is kidney-shaped. Based on the condition in other basal 

tetanuran theropods (e.g., Madsen, 1976, Rauhut, 2004, Brusatte & Sereno, 2007) the 

basioccipital likely contributed to the condyle, but sutures with the exoccipital-opisthotic 

are obliterated by fusion. Ventrally, the basal tubera descend from the neck of the 

occipital condyle as a narrow sheet. Unfortunately, sutural relationships between the 

basioccipital and basisphenoid in this region are not clear. The tubera are deeper 
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dorsoventrally than the occipital condyle as in some theropods, including Baryonyx 

(BMNH R9951), Ceratosaurus (Madsen & Welles, 2000), and Majungasaurus (Sampson 

& Witmer, 2007). In contrast, the tubera are subequal and often much shorter than the 

occipital condyle in a wide array of basal theropods, including Acrocanthosaurus 

(OMNH 10146), Allosaurus (Madsen, 1976), Cryolophosaurus (Smith et al., 2007), 

Dilophosaurus (Welles, 1984), Dubreuillosaurus (Allain, 2002), Piveteausaurus (Taquet 

& Welles, 1977), Sinraptor (IVPP 10600), and “Syntarsus” kayentakatae (Tykoski, 

1998). Distally the tubera are slightly separated by a broad concave notch as in most 

basal theropods. Ceratosaurus and especially Cryolophosaurus exhibit a more extreme 

condition in which the tubera are more completely separated by a wider, V-shaped notch. 

The conjoined basal tubera of Monolophosaurus are approximately as wide transversely 

as the occipital condyle as in Allosaurus, Acrocanthosaurus, Baryonyx, and Sinraptor, 

not substantially wider as in other basal theropods. Posteriorly they are excavated by a 

shallow median groove as in many other theropods, but the presence of a subcondylar 

recess (Rauhut, 2004) cannot be determined. 

 The fused exoccipital and opisthotic comprise nearly the entire border of the 

foramen magnum and expand laterally into large paroccipital processes. These processes 

are massive and downturned distally, with the distal end located slightly ventral to the 

occipital condyle. The base of the paroccipital processe, where it emerges from the 

metotic strut, is level with the midpoint of the condyle. The systematic utility of these 

characters is reviewed below.  

The prootic is the best exposed of the elements of the lateral wall of the 

braincase, with the preotic pendant and surrounding areas visible inside the lateral 
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temporal fenestra (Fig. 6). A large, circular opening for the trigeminal (V) nerve is 

located immediately posterior to the prootic-laterosphenoid suture, and thus is enclosed 

entirely within the prootic (Fig. 6, V). Only a single opening is apparent, not separate 

openings for the ophthalmic branch (CN V1) and maxillary and mandibular branches (CN 

V2,3) as in some basal theropods (Allosaurus: Madsen, 1976; Piveteausaurus: Taquet & 

Welles, 1977) and several coelurosaurs (Currie, 1985; Sues, 1997; Brochu, 2002; see 

review of this character in Brusatte & Sereno, 2007, 2008). Posteroventral to the 

trigeminal foramen is a much smaller opening for the facial (VII) nerve, which is infilled 

with matrix (Fig. 6, VII). These two openings are separated by a narrow but raised strut 

of bone that is only 4 mm thick at its widest point.  

Two additional openings penetrate the prootic, both of which are approximately 

equal in size to the facial foramen (Fig. 6, pn). The first is located slightly anteroventral 

to the facial foramen, in a similar location to a pneumatopore described in 

Piatznitzkysaurus by Rauhut (2004). The second is approximately 10 mm ventral to the 

facial foramen and immediately dorsal to the articulation with the basisphenoid. While 

this foramen may be for the internal carotid, it is located much further dorsally than this 

opening in other basal theropods with well-described braincases (Acrocanthosaurus: 

Franzosa & Rowe, 2005, OMNH 10146; Piatznitzkysaurus: Rauhut, 2004). Instead, it is 

more likely a pneumatopore associated with the heavily pneumatic anterior tympanic 

recess (Fig. 6, atr). This recess shallowly excavates the much of the prootic in this region, 

and houses the facial foramen and both pneumatopores. It is demarcated anteriorly by a 

concave ridge, which also forms the anterior margin of the facial foramen and the first 

pneumatopore. The recess appears to be much shallower than in Piatnitzkysaurus 
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(Rauhut, 2004), a condition almost certainly exaggerated by postmortem crushing. 

However, some basal theropods (e.g., Cryolophosaurus: Smith et al., 2007) genuinely 

appear to possess only a shallow anterior tympanic recess. 

Dorsally, the prootic meets the parietal in a nearly horizontal, heavily rugose 

suture (Fig. 6, pa). Few details of the parietal are observable, but the prootic is clearly 

excavated by a deep, anteroposteriorly-elongate dorsal tympanic recess immediately 

ventral to this contact (Fig. 6, dtr). This recess is delimited ventrally by a thick and 

prominent ridge of bone that trends slightly posteroventrally, and is similar in 

morphology to the corresponding recess in Piatnitzkysaurus (Rauhut, 2004). Anterior to 

the parietal suture the prootic contacts the laterosphenoid via an elongate, curving suture 

that is oriented strongly anteroventrally. Only a narrow portion of the posterodorsal 

region of the laterosphenoid is exposed, immediately posterior to where the capitate 

process begins to expand laterally to meet the frontal (Fig. 6, ls). Three small depressions 

penetrate the laterosphenoid in this region, including a small opening that may have 

housed the middle cerebral vein. Ventrally, the prootic contacts the basisphenoid, but 

only a very narrow and heavily abraded region of the latter bone is exposed (Fig. 6, bs). 

Anteroventrally, the prootic meets the lateral wing of the exoccipital-opisthotic (Fig. 6, 

eo). A deep, semilunate depression between the two elements in the anterodorsal corner 

of this contact may represent the fenestra ovalis (Fig. 6, fo), as this opening is located in a 

similar position in other basal theropods (e.g., Acrocanthosaurus; Cryolophosaurus; 

Dubreuillosaurus; Giganotosaurus: Coria & Currie, 2002; Piveteausaurus; Sinraptor). 

However, in Monolophosaurus this opening is obscured by matrix, precluding further 

observation.  
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Quadrate: Only parts of the lateral and posterior surfaces of the quadrate are visible in 

the current mount (Figs. 1, 2, 5). The quadrate cotylus is visible laterally as it articulates 

between the ventral and posterior rami of the squamosal. Ventrally the quadrate twists 

posteriorly such that it is not visible laterally until a small margin is exposed at the 

posteroventral corner of the cranium (Fig. 5, q). The quadrate is not fused to the 

quadratojugal as in Ceratosaurus (Madsen & Welles, 2000) and some abelisaurids 

(Bonaparte et al., 1990) or partially coossified as in Cryolophosaurus (Smith et al., 

2007).  

In posterior view the entire quadrate is 135 mm dorsoventrally tall and excavated 

by a deep groove trending dorsoventrally. A similar groove is present in other basal 

theropods (e.g., Ceratosaurus: Madsen & Welles, 2000; Giganotosaurus: MUCPv-CH-1; 

Majungasaurus: Sampson & Witmer, 2007; Mapusaurus: Coria & Currie, 2006; 

Torvosaurus: Britt, 1991). This groove appears to lead into the quadrate foramen, which 

is a large, dorsoventrally elongate oval (17 x 10 mm) formed almost equally by the 

quadrate and quadratojugal, similar to the condition in Baryonyx (Charig & Milner, 

1997). In contrast, this foramen is absent in Ceratosaurus and abelisaurids (Sampson & 

Witmer, 2007) and formed almost entirely by the quadrate in Dilophosaurus (Welles, 

1984), most allosauroids (Currie & Zhao, 1993; Currie & Carpenter, 2000), and 

apparently Cryolophosaurus (Smith et al., 2007). The foramina of Mapusaurus (Coria & 

Currie, 2006) and apparently Torvosaurus (Britt, 1991) are formed by a wide contribution 

from the quadratojugal, but these openings are much smaller than the foramen in 

Monolophosaurus. The condition in Allosaurus is variable (RBJB, pers. obs), and the 
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foramen is not uniformly formed almost entirely from the quadrate as is often stated in 

the literature (e.g., Madsen, 1976). 

Contact with the articular is made via two articular condyles, of which the lateral 

condyle is slightly wider transversely (34 mm) than the medial (29 mm). However, the 

medial condyle is more massive than the lateral element, and projects further ventrally. 

These condyles are separated by a deep cleft, and their posterior surface is heavily rugose 

for approximately 35 mm dorsal to the lower jaw articulation. Anteriorly the quadrate 

expands into a broad flange for articulation with the pterygoid, which is visible inside the 

lateral temporal fenestra. Unfortunately, the articulated nature of the skull precludes 

observation of the quadratojugal contact, which is developed as a flange in some basal 

theropods (see below). 

 

Palate: Other elements of the palate are visible within the antorbital fenestra (vomer, 

palatine) and lateral temporal fenestra (pterygoid, epipterygoid), but little can be said of 

their morphology. However, a pneumatopore visible between the exposed jugal and 

vomeropterygoid processes of the palatine clearly indicates that this element was 

pneumatic, as in many other theropods (Currie & Zhao, 1993). 

 

LOWER JAW 

As with the cranium, the lower jaw as currently mounted is visible in lateral view, 

permitting detailed observation of the lateral surfaces of the dentary, surangular, and 

angular (Figs. 1, 7). However, the medial surface of the dentary, as well as the splenial, 

prearticular, articular, coronoid, and supradentary are obscured. An illustration of the 
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lower jaw in medial view is provided by Zhao & Currie (1993:fig 2), and some important 

features gleaned from this illustration and photos taken before the specimen was mounted 

will be discussed. 

 The entire lower jaw is 750 mm long anteroposteriorly. The dentary, surangular, 

and angular contribute to the external mandibular fenestra, which is 67 mm long and 25 

mm dorsoventrally deep on the left side. The right opening appears slightly larger due to 

breakage. The maximum dimension of the external mandibular fenestra is approximately 

1/10 the length of the lower jaw, approximately the same ratio as in Acrocanthosaurus 

(0.12; Currie & Carpenter, 2000), Ceratosaurus (0.12; Madsen & Welles, 2000), and 

Zupaysaurus (0.13; Ezcurra, 2007), but reduced compared to Sinraptor (0.17; Currie & 

Zhao, 1993), coelophysids (Coelophysis: 0.19; Colbert, 1989) and abelisaurids 

(Carnotaurus: 0.22, Tykoski & Rowe, 2004; Majungasaurus: 0.24, Sampson & Witmer, 

2007). However, this fenestra is not reduced to the extreme extent seen in Allosaurus 

(0.08; Madsen, 1976) and Dilophosaurus (0.09; Welles, 1984). 

 
Dentary: The dentary is gracile, extending 438 mm from the anterior margin to its 

posterior termination at the external mandibular fenestra (Fig. 1). It is deepest at the 

anterior edge of the surangular contact, at which point it is 86 mm dorsoventrally deep. It 

narrows anteriorly to a depth of 52 mm at the level of the 10th alveolus, then expands 

again to 62 mm at the 5th alveolus, and narrows slightly to a depth of 55 mm at its 

anterior margin. Although the dentary does expand somewhat anteriorly, this expansion 

is not as extreme as in carcharodontosaurids (Calvo & Coria, 2000; Brusatte & Sereno, 

2007) or Spinosaurus (Smith et al., 2006), in which the anterior dentary is squared off 

and much deeper than the remainder of the alveolar ramus. Furthermore, there is no 
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ventral process protruding from the anteroventral corner of the dentary as in 

Piatznitzkysaurus (Bonaparte, 1986) and derived carcharodontosaurids (Brusatte & 

Sereno, 2007, 2008). 

 Contacts with the surangular, angular, and splenial are visible in lateral view. 

Details of medial contacts with the coronoid, prearticular, and splenial are obscured by in 

the present mount but illustrated by Zhao & Currie (1993:fig 2) and will not be discussed 

further. The dentary contacts the surangular via a 125-mm-long contact that appears to 

have been quite loose in life. This articulation begins anteriorly immediately posterior to 

the tooth row, trends posteroventrally, and terminates at the anterodorsal margin of the 

external mandibular fenestra. Slightly ventral to this region the dentary meets the angular 

at a 40-mm-tall, nearly vertical suture at the anteroventral corner of the fenestra. Finally, 

a narrow portion of the splenial (65 mm long by 55 mm deep) is exposed laterally as it 

wraps around the ventral margin of the dentary immediately anterior to the external 

mandibular fenestra (Figs. 1, 7, sp). Such lateral exposure is also seen in Herrerasaurus 

(Sereno & Novas, 1993), Ceratosaurus (Currie & Zhao, 1993), and dromaeosaurids 

(Currie, 1995), but is absent in allosauroids (Acrocanthosaurus: Currie & Carpenter, 

2000; Allosaurus: Madsen, 1976; Sinraptor: Currie & Zhao, 1993). The splenial is also 

exposed laterally in Majungasaurus, but this taxon exhibits a hypertrophied process for 

articulation with the angular that is widely visible in lateral view, unlike the condition in 

Monolophosaurus (Sampson & Witmer, 2007). 

 The surangular and angular of Monolophosaurus do not contact each other 

anterior to the fenestra, allowing the dentary to make a minor contribution (~25 mm) to 

its anterior margin (Fig. 7, emf). A similar condition characterizes Acrocanthosaurus 
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(Currie & Carpenter, 2000) and Sinraptor (Currie & Zhao, 1993), but differs from the 

morphology in Ceratosaurus, Dilophosaurus, Zupaysaurus, coelophysids (Tykoski & 

Rowe, 2004), and abelisaurids (Sampson & Witmer, 2007), in which the dentary 

contributes more broadly to the fenestra and often comprises part of the dorsal and 

ventral margins. Allosaurus exhibits an autapomorphic condition in which the dentary is 

completely excluded from the strongly-reduced external mandibular fenestra (Madsen, 

1976). In Monolophosaurus, the dentary is excavated by a deep, triangular fossa 

immediately anterior to the fenestra. This fossa does not appear to communicate with the 

fenestra externally.  

 The lateral surface of the dentary is slightly rugose anteriorly and is penetrated by 

numerous foramina, which are especially common along the tooth row and the ventral 

margin (Fig. 1). Near the tooth row, four very prominent, oval-shaped foramina up to 10 

mm in maximum dimension open dorsally immediately below the first four alveoli. 

However, at the level of the 5th alveolus this primary row curves ventrally, and the 

foramina become less distinct, smaller, and circular, with a maximum diameter of 2-3 

mm. At the level of the 9th alveolus distinct foramina disappear and are replaced by a 

sharp groove, which arches dorsally, becomes less prominent posteriorly, and reaches the 

alveolar margin where the dentary contacts the surangular. The ventral curvature of the 

primary row is pronounced, as it is only 8 mm ventral to the tooth row anteriorly and 

drops to 22 mm at the level of the 8th alveolus. A similar condition is seen in Baryonyx 

(Charig & Milner, 1997), Dubreuillosaurus (Allain, 2002), and carcharodontosaurids 

(Carcharodontosaurus: Brusatte & Sereno, 2007; Giganotosaurus: Calvo & Coria, 2000; 

Neovenator: Brusatte et al., 2008). However, the principal row of Allosaurus (Madsen, 
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1976) and Sinraptor (Currie & Zhao, 1993) runs parallel and immediately ventral to the 

tooth row for its entire length, whereas that of Ceratosaurus (Madsen & Welles, 2002) 

and abelisaurids (Sampson & Witmer, 2007) runs far ventral to the tooth row for its entire 

length. 

 In addition to the primary row of neurovascular foramina dorsally, the dentary of 

Monolophosaurus is also marked by a row of ventral foramina (Fig. 1). These foramina 

are smaller than their dorsal counterparts, measuring 2-4 mm in diameter, and extend in a 

nearly horizontal series approximately 8 mm above the ventral margin. Most basal 

theropods do not possess a discrete row of foramina ventrally, but rather a more random 

array of openings that vary drastically in size (e.g., Baryonyx: Charig & Milner, 1997; 

Ceratosaurus: Madsen & Welles, 2000; Majungasaurus: Sampson & Witmer, 2007; 

Piatznitzkysaurus: Bonaparte, 1986). Other theropods (e.g., Dubreuillosaurus: MNHN 

1998-13 RJN 22; Sinraptor: IVPP 10600) do possess a similar row, but this does not 

extend as far posteriorly as the series in Monolophosaurus, which terminates at the level 

of the 13th alveolus. 

 Few details of the medial surface of the dentary are visible in the current mount, 

but such a view is figured by Zhao & Currie (1993:fig 2). The interdental plates are 

unfused, and the Meckelian groove terminates anteriorly at the level of the 3rd alveolus, 

grading into two elongate foramina which are staggered one on top of the other. The 

dentary symphysis is poorly defined, and the articulated dentaries form a narrow V-shape 

in dorsal view. This is similar to the condition in many basal theropods, but unlike the 

more expanded and U-shaped articulation in Allosaurus, carcharodontosaurids (Brusatte 

& Sereno, 2007), and abelisaurids (Sampson & Witmer, 2007). There are 18 alveoli on 
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the right dentary and 17 on the left. The third alveolus is slightly enlarged relative to the 

second (Table 2). However, the dentary is not swollen laterally to accommodate a 

greatly-enlarged third dentary tooth as in coelophysoids and spinosauroids (Rauhut, 2003, 

Benson et al., 2008, Sadlier et al., 2008). 

 
Surangular: The elongate surangular extends 317 mm anteroposteriorly from its anterior 

contact with the dentary to a posterior flange that covers the articular laterally (Figs. 1, 7). 

It achieves a maximum dorsoventral depth of 55 mm above the midpoint of the external 

mandibular fenestra, which is completely roofed by the surangular dorsally.  

Articulation with the dentary is achieved via an elongate contact described above. 

The anterodorsal region of this contact is complex, with a finger-like process on the 

dentary fitting into a notch on the surangular (Fig. 7, san). This notch is demarcated 

ventrally by a smaller finger-like process on the surangular, which fits into a 

corresponding notch on the dentary, as described for Sinraptor (Currie & Zhao, 1993) 

and present in many theropods. Posteriorly, a groove leads away from this contact and 

follows the dorsal margin of the surangular for approximately 100 mm, before 

terminating in a small foramen (Fig. 7, gr, for). Often referred to as the anterior 

surangular foramen, this opening likely transmitted branches of the inferior alveolar 

nerve (Currie & Zhao, 1993). The groove, which is present in many other theropods (e.g., 

Allosaurus: Madsen, 1976; Majungasaurus: Sampson & Witmer, 2007; Sinraptor: Currie 

& Zhao, 1993) is essentially continuous with the principal neurovascular groove on the 

dentary, and is only separated from it briefly by the double-notched dentary-surangular 

contact.  
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The surangular and angular meet at a nearly horizontal suture, which begins at the 

midpoint of the posterior margin of the external mandibular fenestra. It continues 

posteriorly to the level of the posterior surangular foramen, at which point there is a 

marked ventral step. Posterior to the step a thin process of the angular continues 

posteriorly past the posterior surangular foramen and nearly reaches the mandibular 

articulation (Fig. 7, angpp). A similar condition has been described in Cryolophosaurus 

(Smith et al., 2007) and “Syntarsus” kayentakatae (Tykoski, 1998), and may also be 

present in Dilophosaurus (Smith et al., 2007). However, the step in Cryolophosaurus is 

much larger, and better described as a deep notch (Smith et al., 2007:fig 4, 5). The 

posterior process of the angular does not reach the mandibular articulation in 

Monolophosaurus, thus allowing the surangular to contribute to the posteroventral 

margin of the lower jaw. This contrasts with the case in the aforementioned taxa, as well 

as some theropods without a stepped contact (Allosaurus: Madsen, 1976; Zupaysaurus: 

Ezcurra, 2007; apparently Dracovenator: Yates, 2005:fig 6), in which the angular forms 

the entire posteroventral margin of the jaw. The surangular reaches the posteroventral 

margin in most other basal theropods (e.g., Acrocanthosaurus, Dubreuillosaurus, 

Sinraptor, abelisaurids), but unlike Monolophosaurus these taxa do not possess a stepped 

surangular-angular contact and a discrete posterior process of the angular.  

Externally, the surangular is penetrated by an oval-shaped posterior surangular 

foramen, which measures 11 mm in anteroposterior length and 5 mm in dorsoventral 

depth (Fig. 7, saf). This opening is small as in most basal theropods, and opens anteriorly 

into a very low fossa which fans out and reaches the posterodorsal margin of the external 

mandibular fenestra. Posteriorly, the foramen is bordered by a rugose ridge that runs 
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vertically down the surangular and terminates at the posteroventral margin of the lower 

jaw. However, dorsally the foramen is bordered by a smooth and unexpanded surface that 

is at the same level as the lateral surface of the surangular ventrally (Fig. 7, smo). This is 

a rare feature among theropods, as most other taxa are characterized by a thickened and 

robust shelf of bone that overhangs the posterior surangular foramen dorsally. This shelf 

is massive and elongated in some taxa (e.g., Acrocanthosaurus: Currie & Carpenter, 

2000; Cryolophosaurus: Smith et al., 2007; abelisaurids: Sampson & Witmer, 2007) and 

shorter and pendant anteriorly in others (e.g., Allosaurus: Madsen, 1976; Sinraptor: 

Currie & Zhao, 1993), but some sort of ridge that overhangs the remainder of the 

surangular is invariably present in most other basal theropods. The lack of a surangular 

ridge is also seen in a specimen from the Taynton Limestone Formatin (Bathonian, 

Middle Jurassic) of England (OUMNH J.29813) that may be referable to Megalosaurus. 

 
Angular: The angular is 179 mm long anteroposteriorly and reaches a maximum depth of 

38 mm immediately posterior to the external mandibular fenestra (Figs. 1, 7, ang). The 

angular comprises the entire ventral border and most of the posterior border of the 

fenestra. The anterior region of the dorsal surface of the angular is strongly concave 

where it forms the floor of the fenestra, which is much more rounded than the dorsal 

margin formed by the surangular. Posteriorly, a small posterior process is separated from 

the remainder of the angular by a step, as described above (Fig. 7, angpp). The ventral 

margin of the angular is convex across most of its length, but is concave for a small 

region immediately anterior to the base of the posterior process. 

 

DISCUSSION 
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PHYLOGENETIC POSITION OF MONOLOPHOSAURUS 

 Monolophosaurus was originally described as a “megalosaur grade” theropod 

with a curious mixture of primitive theropod characters and more derived features seen in 

Allosaurus and kin (Zhao & Currie, 1993). Subsequent cladistic analyses frequently 

recovered Monolophosaurus as a member of Allosauroidea (sometimes referred to as 

Carnosauria), a basal tetanuran clade that includes Allosaurus, the Middle Jurassic Asian 

Sinraptoridae, and the primarily large-bodied and Gondwanan Carcharodontosauridae 

(e.g., Sereno et al., 1994, 1996, Currie & Carpenter, 2000, Holtz, 2000, Rauhut, 2003, 

Holtz et al., 2004, Novas et al., 2005, Coria & Currie, 2006). However, Smith et al. 

(2007) placed Monolophosaurus in a slightly more basal position, as the sister taxon to a 

clade of Allosauroidea + Coelurosauria (Neotetanurae). They found a wider distribution 

for five cranial characters previously used to place Monolophosaurus within 

Allosauroidea and identified four features that may unite Monolophosaurus with more 

basal clades. Our redescription of the postcranial skeleton of Monolophosaurus (Zhao et 

al., in review) also highlighted a number of primitive features unknown in other 

tetanurans, suggesting a more basal position of Monolophosaurus than is commonly 

advocated. This appraisal is supported by reassessment of the skull. 

 

Cladistic Analysis: We do not include a new cladistic analysis here, as it is outside the 

scope of this paper. However, information from this study will be incorporated into a 

larger cladistic analysis of basal theropods to be published elsewhere (Carrano, Benson & 

Sampson, in prep). In the meantime, we present a slightly modified version of Smith et 

al.’s (2007) analysis, currently the largest and most informative dataset yet applied to 
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basal theropods. We have rescored Monolophosaurus based on our redescription of the 

skull and postcranium (Zhao et al., in review), and have also slightly altered the scores 

for one character (Appendix 1). The revised analysis recovers 108 most parsimonious 

trees (MPTs; CI=0.482, RI=0.768), the same number found by Smith et al. (2007), but of 

length 843, 10 steps longer than the MPTs in the original analysis. The strict consensus of 

these trees is identical to the strict consensus reported by Smith et al. (2007), which 

places Monolophosaurus as a basal tetanuran immediately outside of the clade 

Allosauroidea + Coelurosauria (Neotetanurae). Characters supporting the placement of 

Monolophosaurus within Tetanurae and a monophyletic Allosauroidea exclusive of 

Monolophosaurus are essentially the same as those found and reviewed by Smith et al. 

(2007). 

 

Allosauroid Cranial Characters: Smith et al. (2007) pointed out that some cranial 

characters previously used to place Monolophosaurus within Allosauroidea have a wider 

distribution, and are sometimes even present in non-tetanuran theropods. They listed five 

characters in particular: pneumatic openings in the nasal, extension of the antorbital fossa 

onto the nasal, broad contact between the squamosal and quadratojugal, pneumatism 

associated with the internal carotid canal, and a pendant medial process on the articular. 

However these characters were only listed and other cranial features used to link 

Monolophosaurus to allosauroids were not reviewed. We provide a discussion of several 

cranial characters once thought to diagnose Allosauroidea, which should clarify their 

usage for future phylogenetic analyses. 
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 1) Nasal Antorbital Fossa: Several authors (e.g., Sereno et al., 1994, 1996, Holtz 

2000, Rauhut 2003, Holtz et al., 2004) have scored Monolophosaurus and allosauroids as 

possessing an antorbital fossa that continues dorsally onto the lateral surface of the nasal 

(Fig. 3, nantfos). In contrast, the fossa of most other theropods is restricted to the maxilla, 

lacrimal, and jugal. However, a nasal antorbital fossa is also present in the basal 

theropods Cryolophosaurus (Smith et al., 2007), Dilophosaurus (Smith et al., 2007), and 

Majungasaurus (Sampson & Witmer, 2007). The presence of this feature in an 

abelisaurid (Majungasaurus), basal neotheropods (Cryolophosaurus, Dilophosaurus), 

and allosauroids suggests that it is a particularly homoplastic character. 

 2) Nasal Pneumatopores: Holtz (2000), Rauhut (2003), and Holtz et al. (2004) 

found pneumatic openings in the lateral surface of the nasal as an allosauroid 

synapomorphy, and an important character linking Monolophosaurus to this clade. 

Indeed, most basal theropods lack nasal pneumatopores, as has been confirmed by recent 

redescription of several taxa (e.g., Ceratosaurus: Madsen & Welles, 2000, contra Rauhut, 

2003; Cryolophosaurus: Smith et al., 2007; Zupaysaurus: Ezcurra, 2007). On the other 

hand, Monolophosaurus (Figs. 1, 3, nfor) and many allosauroid taxa (e.g., Allosaurus, 

Giganotosaurus, Mapusaurus, Neovenator) do possess pneumatic openings, which vary 

in size and number, as reviewed above. However, at least one abelisaurid 

(Majungasaurus: Sampson & Witmer, 2007) also possesses a pneumatopore, and the 

missing nasals of many basal theropods preclude a broader survey of this character. Thus, 

its utility as an allosauroid synapomorphy is currently limited by homoplasy and missing 

data. 



 56 

 3) Short Quadrate: Sereno et al. (1994, 1996) listed a short quadrate, in which the 

head articulates with the squamosal nearly level with the midpoint of the orbit, as a 

synapomorphy of Allosauroidea, and a character uniting Monolophosaurus with this 

clade. A short quadrate is clearly present in Monolophosaurus (Figs. 1, 2, 5) and several 

allosauroids (e.g., Acrocanthosaurus: Currie & Carpenter, 2000; Allosaurus: Madsen, 

1976; Giganotosaurus: Coria & Salgado, 1995; Sinraptor: Currie & Zhao, 1993). 

However, reinterpretation of material and discovery of new specimens show this 

character to be more widely distributed. If measured with the skull roof held horizontal, 

this character is also present in spinosaurids (Irritator: Sues et al., 2002:fig 6) and basal 

coelurosaurs (Compsognathus: Peyer, 2006:fig 4; Guanlong: Xu et al., 2006; possibly 

Ornitholestes: Carpenter et al., 2005). Furthermore, a short quadrate is figured for 

Torvosaurus (Britt, 1991) and Afrovenator (Sereno et al., 1994:fig 2), although this latter 

reconstruction is based on Allosaurus. 

 4) Jugal Pneumatopore: Rauhut (2003) optimized a pneumatic opening in the 

posteroventral corner of the jugal antorbital fossa as a synapomorphy of Allosauroidea 

(including Monolophosaurus), and convergently acquired in tyrannosauroids. Jugal 

pneumaticity is present in many allosauroids and absent in most basal theropods (see 

above) and derived coelurosaurs (see review in Weishampel et al., 2004). However, it is 

absent in the allosauroid Allosaurus and present in basal coelurosaurs (tyrannosauroids: 

Holtz, 2004, Xu et al., 2004, 2006; potentially Ornitholestes: Sereno et al., 1996). 

Additionally, Sereno et al. (1994) described a jugal pneumatopore in the basal 

spinosauroid Afrovenator, but we were unable to verify this score based on our 

observation of casts (UC OBA 1) and consider it absent. Thus, this character appears to 
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be present at the base of several large clades (Allosauroidea, Coelurosauria, possibly 

Spinosauroidea), rendering it unlikely as an allosauroid synapomorphy. Indeed, a more 

basal optimisation, probably at the base of Tetanurae or the clade Allosauroidea + 

Coelurosauria (Neotetanurae), has been recovered in other cladistic analyses (e.g., Holtz 

2000, Holtz et al., 2004, Smith et al., 2007). 

 5) Quadrate with Broad Articular Flange for Quadratojugal: Sereno et al. (1996) 

listed this character as diagnostic of Allosauroidea, although it could not be scored in 

several taxa, including Monolophosaurus. Narrow flanges are present in many basal 

theropods (e.g., Eustreptospondylus: Sadlier et al, 2008; Majungasaurus: Sampson & 

Witmer, 2007; Torvosaurus: Britt, 1991). In contrast, a broad flange is clearly present in 

Allosaurus (Madsen, 1976:pl 3F) and Sinraptor (Currie & Zhao, 1993:fig 8G), but one of 

similar size is also present in Dilophosaurus (Welles, 1984:fig 5B) and spinosaurids 

(Baryonyx: Charig & Milner, 1997:fig 11A). The quadrate and quadratojugal are 

cossified in Ceratosaurus (Madsen & Welles, 2000), precluding comparison. 

 6) Downturned Paroccipital Processes: Ventrally-directed paroccipital processes 

with a distal end located ventral to the foramen magnum have been considered a 

synapomorphy of Allosauroidea, including Monolophosaurus (Rauhut, 2003, Holtz et al., 

2004). However, two aspects of the paroccipital processes deserve further comment. 

First, allosauroids (e.g., Acrocanthosaurus: OMNH 10146; Allosaurus: Madsen, 1976; 

Carcharodontosaurus: Brusatte & Sereno, 2007; Sinraptor: Currie & Zhao, 1993) are 

characterized by a unique condition in which the ventral base of the paroccipital process 

where it emerges from the metotic strut is located entirely below the occipital condyle. In 

Monolophosaurus the base is level with the midpoint of the condyle, as is also the case in 
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an array of basal theropods (Baryonyx: Charig & Milner, 1997; Cryolophosaurus: Smith 

et al., 2007; Majungasaurus: Sampson & Witmer, 2007; Piatznitzkysaurus: Rauhut, 

2004). Other basal theropods have paroccipital processes bases located entirely dorsal to 

the occipital condyle (Ceratosaurus: Madsen & Welles, 2000; Dilophosaurus: Welles, 

1984; Dubreuillosaurus: Allain, 2002; Piveteausaurus: Taquet & Welles, 1977; 

Zupaysaurus: Ezcurra, 2007). Second, the aforementioned allosauroid taxa possess 

paroccipital processes with distal ends located ventral to the occipital condyle, which 

Rauhut (2003:character 54) specifically used to link Monolophosaurus and allosauroids. 

While Monolophosaurus does possess this character state, so do some other basal 

theropods, including Ceratosaurus and Cryolophosaurus. Furthermore, the distal end 

extends only slightly below the condyle in Monolophosaurus, whereas it is located far 

ventrally in Acrocanthosaurus, Allosaurus, and Ceratosaurus. 

 7) Basal Tubera Width: Holtz (2000) recovered narrow basal tubera, with a 

transverse width less than that of the occipital condyle, as diagnostic of Allosauroidea, 

including Monolophosaurus. However, narrow basal tubera are not uniformly present in 

allosauroids, as they are found in some taxa (Acrocanthosaurus, Allosaurus, Sinraptor: 

Brusatte & Sereno, 2008) but not in Carcharodontosaurus (Brusatte & Sereno, 2007, 

2008). Unfortunately, missing data in other allosauroids precludes comparison. 

Additionally, narrow basal tubera are also seen in the spinosaurid Baryonyx (Charig & 

Milner, 1997).  

 8) Small External Mandibular Fenestra: Sereno et al. (1994, 1996) considered a 

small external mandibular fenestra, which they equated to a deep anterior ramus of the 

surangular, as diagnostic of Allosauroidea. As discussed above, the maximum dimension 
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of the fenestra of Monolophosaurus is approximately 1/10 the length of the lower jaw, 

which is approximately the same ratio as in some allosauroids and basal tetanurans. 

However, allosauroids are not characterized by a uniform condition, as originally noted 

by Sereno et al. (1996). Sinraptor, for instance, has a large fenestra, while Allosaurus has 

an autapomorphically reduced opening. Thus, this character is highly variable across 

basal theropods, and unlikely to support a grouping of Monolophosaurus and 

Allosauroidea to the exclusion of other taxa. 

 9) Pendant Medial Process of the Articular: Several authors (Sereno et al., 1994, 

1996, Holtz et al., 2004) have recovered a pendant medial process of the articular as 

diagnostic of Allosauroidea, although unscorable in Monolophosaurus. This process is 

clearly present in allosauroids (Allosaurus: Madsen, 1976:pl 7B; Giganotosaurus: 

MUCPv-CH-1; Sinraptor: Currie & Zhao, 1993:fig 10D), but new discoveries and 

reinterpretations have revealed its presence in a range of basal theropods, including 

Cryolophosaurus (Smith et al., 2007), Dilophosaurus (Yates, 2005), and Dracovenator 

(Yates, 2005). It is likely that increased taxon sampling will confirm its presence in other 

basal theropods (Yates, 2005). 

 Additional characters once used to unite Monolophosaurus with Allosauroidea 

have been reviewed elsewhere, and include shortened basipterygoid processes (Rauhut, 

2003), pneumaticity associated with the internal carotid canal (Brusatte & Sereno, 2008), 

and a basioccipital excluded from the basal tubera (Rauhut, 2003, Brusatte & Sereno, 

2008). 

 This review indicates that several characters previously used to support a link 

between Allosauroidea and Monolophosaurus are widely distributed among basal 
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theropods, in agreement with Smith et al. (2007). In fact, no unequivocal characters 

uniting these taxa remain. Although it is possible that some phylogenetic signal linking 

these taxa may override this homoplasy, recent cladistic analyses (Smith et al., 2007 and 

the modifications herein) strongly indicate that Monolophosaurus is not nested within 

Allosauroidea, and in fact is a more basal tetanuran taxon. On a larger scale, this begs the 

question of what characters are diagnostic of Allosauroidea (Allosaurus, Sinraptoridae, 

Carcharodontosauridae), a clade whose internal relationships are well-studied (Brusatte & 

Sereno, 2008) but whose monophyly is poorly-supported. Smith et al. (2007) recovered a 

monophyleic Allosauroidea united by only two unequivocal synapomorphies and four 

equivocal synapomorphies, very weak character support relative to that of other major 

clades in their analysis. Continuing revision of basal tetanuran phylogeny raises the 

possibility that Allosauroidea may not be monophyleic, a question outside of the scope of 

this paper that will be addressed in a future publication by one of us (Carrano, Benson & 

Sampson, unpublished data).      

 

Primitive Characters of Monolophosaurus: In our redescription of the postcranium of 

Monolophosaurus we identified several features of the pelvis that are present in non-

tetanuran theropods but absent in all other tetanurans (Zhao et al., in prep). Similarly, 

Smith et al. (2007) identified three features of the skull of Monolophosaurus that are also 

common in more basal theropods: a postorbital that reaches the floor of the orbit, a 

nasolacrimal crest that includes a contribution from the premaxillae, and a laterally 

exposed quadrate-quadratojugal suture. Along with the results of recent cladistic analyses 
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(Smith et al., 2007 and modifications herein), these features support a basal tetanuran 

position for Monolophosaurus. 

Our redesciption of the skull has revealed several retained plesiomorphies often 

absent in tetanurans. Monolophosaurus appears to lack any external signs of lacrimal 

pneumaticity, a condition shared with some basal theropods (coelophysids and 

abelisaurids: Ezcurra & Novas, 2007, Sampson & Witmer, 2007; Dilophosaurus: Welles, 

1984, UCMP 77270) but contrasting with the laterally-exposed pneumatopores of most 

theropods, including basal forms such as Cryolophosaurus (Smith et al., 2007) and 

Zupaysaurus (Ezcurra & Novas, 2007). Second, the maxilla of Monolophosaurus is 

excavated by a single accessory opening (sometimes expressed as a depression), as in 

some coelophysids (Tykoski, 1998, Tykoski & Rowe, 2004), abelisaurids (Sampson & 

Witmer, 2007), and Dilophosaurus (Welles, 1984), and contrasting with the multiple 

openings (promaxillary and maxillary fenestrae) of most tetanurans (Witmer, 1997). 

However, this character is homoplastic, as some tetanurans only have a single opening or 

depression (e.g., Carcharodontosaurus: Sereno et al.,1996, Brusatte & Sereno, 2007; 

Torvosaurus: Britt, 1991; spinosaurids: Sereno et al., 1998). Third, the length-to-depth 

ratio of the cranium of Monolophosaurus approaches 3.0, a threshold often held to be a 

coelophysoid synapomorphy (Sereno, 1999, Ezcurra, 2007). In contrast, the skulls of 

many other basal theropods (e.g., Eoraptor: Sereno et al., 1993; Ceratosaurus: Madsen & 

Welles, 2000, Tykoski & Rowe, 2004; abelisaurids: Sampson & Witmer, 2007) and 

tetanurans (e.g., Acrocanthosaurus: Currie & Carpenter, 2000; Allosaurus: Madsen, 

1976; Sinraptor: Currie & Zhao, 1993) are deeper compared to their lengths, with a ratio 

between 1.5-2.5. However, this character is also likely homoplastic, as a range of other 
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basal theropods (Afrovenator: Sereno et al., 1994; Dilophosaurus: Welles, 1984; 

Dubreuillosaurus: Allain, 2002; Herrerasaurus: Sereno & Novas, 1993; Suchomimus: 

Sereno et al., 1998; Torvosaurus: Britt, 1991; Zupaysaurus: Ezcurra, 2007) and basal 

coelurosaurs (Compsognathus: Peyer, 2006; Dilong: Xu et al., 2004; Guanlong: Xu et al., 

2006; Juravenator: Gohlich & Chiappe, 2006; Ornitholestes: Carpenter et al., 2005) also 

possess long and low skulls with a ratio between 2.5-3.8. Regardless, the long and low 

skull of Monolophosaurus does contrast with the deeper skulls of Allosauroidea. 

The skull of Monolophosaurus also possesses several features seen in basal 

theropods. The main body of the maxilla retains a nearly constant depth across its length, 

due to nearly parallel dorsal and ventral margins. This morphology is also seen in 

Zupaysaurus (Ezcurra, 2007) and abelisaurids (Sampson & Witmer, 2007), but contrasts 

with the tapering maxillae of most other theropods. The anterior ramus of the 

quadratojugal projects beyond the anterior margin of the lateral temporal fenestra, also 

seen in Dilophosaurus (Welles, 1984) and Zupaysaurus (Ezcurra, 2007), but contrasting 

with the shortened rami of most theropods (e.g., Allosaurus: Madsen, 1976; 

Ceratosaurus: Madsen & Welles, 2000, Sampson & Witmer, 2007; Cryolophosaurus: 

Smith et al., 2007; Compsognathus: Peyer, 2006; Dilong: Xu et al., 2004; 

Dubreuillosaurus: Allain, 2002; Guanlong: Xu et al., 2006; Majungasaurus: Sampson & 

Witmer, 2007; Sinraptor: Currie & Zhao, 1993; “Syntarsus” kayentakatae: Rowe, 1989). 

Additionally, the articulation between the squamosal and quadratojugal is similar in 

Monolophosaurus and Zupaysaurus. In these taxa both elements strongly project into the 

lateral temporal fenestra, with the dorsal ramus of the quadratojugal articulating with the 

posterior margin of the ventral ramus of the squamosal (compared to other theropods 
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above). Similarly, both taxa have a kinked squamosal ventral process, which is more 

distinct in Zupaysaurus. Finally, the surangular and angular meet at a stepped contact, as 

in Cryolophosaurus (Smith et al., 2007), “Syntarsus” kayentakatae (Rowe, 1989), and 

possibly Dilophosaurus (Smith et al., 2007). 

 

CRANIAL CRESTS IN BASAL THEROPODS 

 Cranial crests, horns, bosses, and other ornamentation are common in theropod 

dinosaurs, and likely served primarily as display devices (Xu et al., 2006, Smith et al., 

2007). A brief review of ornamentation morphology across theropods has been presented 

elsewhere (Smith et al., 2007) and will not be repeated here. However, we highlight the 

use of display features, especially parasagittal crests like those of Monolophosaurus, as 

phylogenetic characters. Homologizing features of the crest among taxa is not trivial, as 

all theropod crests differ in detail. In the face of this difficulty it is unsurprising that some 

authors do not employ characters relating to cranial crest in their phylogenetic data 

matrices (e.g., Harris, 1998, Rauhut, 2003). 

Other authors, however, have attempted to extract phylogenetically-informative 

data from the crests of basal theropods. However, different authors have utilised different 

coding strategies. Holtz (2000) utilised two characters: a presence/absence character for 

paired crescentric nasolacrimal crests linking Dilophosaurus and some coelophysids 

(character 27), and an unordered five-state character for various ornaments of the nasal, 

with different states for median dorsal horns, lateral ridges, and various rugosities (26). 

The underlying assumption of this coding strategy is that these nasal ornaments represent 

variations of the same character, which is almost certainly not the case since the features 
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are vastly different in shape and occur on different surfaces (dorsal vs. lateral). In an 

updated version of this dataset, Holtz et al. (2004) retained the character of the paired 

crescentric crests (59), but limited the more general nasal ornament character to a binary 

character denoting the presence or absence of a “narial median horn or crest” (57). 

Ceratosaurus (horn), Irritator (short, solid crest), and Monolophosaurus (large, 

fenestrated crest) are scored for the derived state, while Dilophosaurus and coelophysids 

(paired crests) are scored for the primitive condition. Between the two characters emerge 

a signal of primary homology linking Dilophosaurus and coelophysids as basal 

theropods, whereas no crest data support a linkage between Dilophosaurus and 

Monolophosaurus despite their somewhat similar parasagittal crests comprised of the 

nasals and lacrimals. 

In their redescription of the crested basal theropod Cryolophosaurus, Smith et al. 

(2007) atomised features of the crest into five distinct characters. Four relate to the 

elements comprising the crest, including participation of the premaxillae (15), nasals 

(42), lacrimals (44), and frontals (64). One character differentiates midline and 

parasagittal crests for those taxa that possess ornamentation (43). As opposed to the 

characters of Holtz (2000) and Holtz et al. (2004), this cocktail of characters gives an 

overall signal of primary homology linking Monolophosaurus with other basal theropods 

such as Cryolophosaurus, Dilophosaurus, Dracovenator, and “Syntarsus” kayentakatae 

as well as Zupaysaurus, whose supposed nasal crests had not been reinterpreted (Ezcurra, 

2007) by the time Smith et al.’s paper went to press. In particular, all of these taxa are 

scored for a nasal crest, whereas many of them (including Monolophosaurus) have crests 

that include contributions from the premaxillae and lacrimals. However, even this degree 
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of atomisation is problematic with respect to primary homology. For instance, 

Monolophosaurus, Dilophosaurus, and Dracovenator are all scored for premaxillary 

contributions to the crest, but the contribution in the latter two taxa is minimal compared 

to the greatly expanded and rugose premaxillary nasal process that is smoothly confluent 

with the nasal crest in Monolophosaurus. Furthermore, Cryolophosaurus, Dilophosaurus, 

and Monolophosaurus are all scored for lacrimal contributions, even though the lacrimal 

is transversely expanded in Cryolophosaurus and a parasagittal, sheet-like expansion in 

the latter two taxa. 

The detailed character of theropod cranial crests is highly variable (cf. Welles, 

1984; Xu et al., 2006; Smith et al., 2007). In light of the fact that no two such crests are 

alike, it is difficult to render a system for coding characters of the cranial crests that takes 

account of variation that may be phylogenetically informative while remaining free of the 

problems of overweighting due to excessive atomisation. An analogous situation can be 

seen in phylogenetic studies of ceratopsians and hadrosaurs, in which it is difficult to 

extract the essential features of a complex and highly variable cranial ornamentation 

(Dodson et al., 2004, Horner et al., 2004). In most cases such extravagant complexity 

belies very little in terms of underlying similarity. However, the crests of some theropods 

are clearly much more similar than are others. For instance, the paired, parasagittal, 

sheet-like crests of basal theropods such as Dilophosaurus (Welles, 1984), and 

“Syntarsus” kayentakatae (Rowe, 1989) are topologically alike and should be considered 

directly homologous (primary homology) to the exclusion of topologically dissimilar 

crests. Although the crests of Dilophosaurus are much larger and incorporate 

contributions from the premaxillae and lacrimals, the overall size of crests and the 
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number of bones they subtend are clearly correlated. It is unlikely that the size of crests is 

phylogenetically informative since such elaborate structures, which may be under 

sexually-driven selection pressures or relate to species recognition (Geist, 1966, Ryan, 

1990, Sampson, 1999), probably evolve rapidly relative to the charcters that support 

major divisions within Theropoda. Therefore, participation in the crest of various skull 

bones probably should not be coded, and in particular, we strongly discourage the use of 

excessive numbers of characters regarding these contributions. Problems arise when 

considering bizarre and highly-autapomorphic cranial crests such as that of 

Cryolophosaurus (Smith et al., 2007), and it is possible that in such cases the best coding 

strategy may be one of resignation in the face of autapomorphic, and therefore 

phylogenetically uninformative, variation. 

For the present paper, it is interesting to consider what derived character states of 

the cranial crest may link Monolophosaurus to other taxa. Although this crest is 

geometrically similar to that of Guanlong (Xu et al., 2006) in certain respects (see 

below), the two are dissimilar in that the crest of Guanlong is transversely narrow, 

whereas that of Monolophosaurus, at its base, is as wide as the nasal bones. The crests of 

Guanlong, Monolophosaurus, and oviraptorosaurs (Osmolska et al., 2004) are similar in 

their pneumatic construction, whereby the bones constituting the crest have been inflated 

and hollowed by pneumatic diverticulae, most likely arising from the paranasal air sac 

(Witmer, 1997). Such pneumatic structure is absent in other crested theropods and may 

support a statement of primary homology between the taxa that possess it. However, 

cranial pneumaticity is widespread in theropods (Witmer, 1997) and the distribution of 

pneumatic structures of bones surrounding the antorbital fenestra such as the jugal and 
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nasal pneumatopores is homoplastic (see above). Particular evidence of this variability is 

the presence of an open maxillary accessory fenestra and a large jugal pneumatopore on 

the left side of the skull of Monolophosaurus, versus an enclosed maxillary depression 

and small jugal pneumatopore on the right side. Therefore, it seems more likely that the 

pneumatic crests of Guanlong, Monolophosaurus, and oviraptorosaurs have arisen 

independently, and that pneumatisation is simply a readily co-opted developmental 

mechanism by which such structures can be produced in theropods. However, this 

mechanism supports a monophyletic clade within Oviraptorosauria (Osmolska et al., 

2004) and so is phylogenetically informative in at least that regard. Thus, we recommend 

that the presence of a pneumatic cranial crest be treated as a putative statement of 

primary homology to be included in phylogenetic datasets and tested by parsimony 

analysis. 

 Other characters of cranial ornamentation that are present in multiple taxa and 

bear detailed similarity should also be employed in phylogenetic analysis. Examples are 

the presence of a nasal horn in Ceratosaurus and some spinosaurids (Charig & Milner, 

1997; Sues et al., 2002; Dal Sasso et al., 2005), and the presence of raised nasal rims in 

Allosaurus (Madsen, 1976), Cryolophosaurus (Smith et al., 2007), and Neovenator 

(Brusatte et al., 2008). Our overall recommendation is that in formulation of such 

characters, undue atomisation and psuedosimilarity should be avoided in favour of 

detailed and topographic similarity. 

 In this vein, we provide an alternative scoring strategy to that utilized by Smith et 

al. (2007). As reviewed above, Smith et al. (2007) atomised the cranial crests of 

theropods into five characters, which largely concern the participation of various bones in 
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the crest. We favour three characters (Appendix 2), which concern the presence, shape, 

and pneumaticity of specific types of cranial crests. When we substitute our three 

characters for the five original characters in our modified version of the Smith et al. 

(2007) dataset (Appendix 1) we recover 972 most parsimonious trees of 839 steps 

(CI=0.484, RI=0.769), compared to 108 trees of 843 steps in the original analysis 

(CI=0.482, RI=0.768). The strict consensus of the new trees is identical to that in the 

original analysis with one major exception: Smith et al.’s (2007) clade of basal crested 

“dilophosaurid” theropods is collapsed. The individual genera in this clade 

(Cryolophosaurus, Dilophosaurus sinensis, Dilophosaurus wetherilli, Dracovenator) fall 

into a polytomy with Zupaysaurus and the large clade Neoceratosauria + Tetanurae. 

Thus, the reality of a basal theropod clade centred on Cryolophosaurus and 

Dilophosaurus, as well as the resolution of basal theropod phylogeny in general, depends 

heavily on how one chooses to code characters relating to cranial crests. We urge future 

authors to think carefully about their character coding strategies and suggest further 

testing of a “dilophosaurid” clade, which if real has interesting implications for theropod 

evolution, Mesozoic palaeobiogeography, and body size evolution. 

 

GUANLONG WUCAII: BASAL TYRANNOSAUROID, JUVENILE MONOLOPHOSAURUS, OR 

NEITHER? 

 Xu et al. (2006) described a mid-sized theropod taxon, Guanlong wucaii, from a 

level of the Shishugou Formation (Oxfordian: Eberth et al., 2001) slightly higher than the 

type locality of Monolophosaurus. Guanlong was interpreted as the oldest known 

tyrannosauroid, and a member of a “specialized lineage in the early evolution of 
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tyrannosauroids” that possesses a mosaic of primitive tetanuran features and derived 

coelurosaurian characters (Xu et al., 2006:717). The most notable feature of this taxon is 

an enlarged, thin, fenestrated midline crest that resembles the crest of Monolophosaurus. 

Noting this similarity, Carr (2006) suggested that the smaller Guanlong may represent a 

subadult Monolophosaurus, or that the two theropods are sister taxa. Histological 

analysis of the holotype of Guanlong, outlined in the supplementary appendix of Xu et al. 

(2006), clearly demonstrates that the specimen pertains to an adult, ruling out the first 

hypothesis of Carr (2006). The presence of a number of autapomorphies in each taxon 

(reviewed above and in Xu et al., 2006) also argues against this suggestion. However, the 

second hypothesis deserves further consideration. 

 The crests of Monolophosaurus and Guanlong are strikingly similar, especially in 

lateral view.  Both are single midline crests comprised primarily of the nasals and 

excavated by large fenestrae, features unknown among other basal theropods. 

Homologizing features of the crest is difficult, as these structures differ in detail. Most 

notably, that of Guanlong is larger, thinner, excavated by four fenestrae (as opposed to 

two), and reinforced by several thin laminae (Xu et al., 2006). However, it is possible that 

a single, fenestrated crest is a synapomorphy uniting a clade of Monolophosaurus and 

Guanlong. Less equivocal are two synapomorphies unrelated to the crest. First, both taxa 

share a large, ovoid external naris that is 25% or longer than the length of the skull (Table 

1). This derived state is unknown in other basal theropods, and contrasts with the much 

smaller nares of tyrannosauroids (Brochu, 2002, Currie, 2003, Xu et al., 2004), basal 

tetanurans (Table 1), and basal coelurosaurs (Compsognathus: Ostrom, 1978, Peyer, 

2006; Ornitholestes: Carpenter et al., 2005; Pelecanimimus: Perez-Moreno et al., 1994; 
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Scipionyx: Dal Sasso & Signore, 1998; Sinosauropteryx: Currie & Chen, 2001). Second, 

both taxa share a weak to nonexistent lateral shelf on the surangular, a feature otherwise 

only known in an isolated surangular from the Middle Jurassic of England (OUMNH 

J.29813). In contrast, tyrannosauroids (Carr, 1999, Currie, 2003, Holtz, 2004; Xu et al., 

2004) and basal coelurosaurs (Compsognathus: Peyer, 2006; Sinocalliopteryx: Ji et al., 

2007) have a robust shelf that strongly overhangs the surangular foramen dorsally, a 

condition that characterizes theropods in general (see theropod chapters in Weishampel et 

al., 2004). 

 Additionally, several features of Guanlong cited as tyrannosauroid apomorphies 

by Xu et al. (2006) are more widely distributed. Many of these are also present in 

Monolophosaurus, and include: fused nasals (also in Ceratosaurus, spinosaurids, and 

some abelisaurids, and which may be related to the development of nasal ornamentation 

in these taxa); a large frontal contribution to the supratemporal fossa,; a pneumatic 

foramen in the antorbital fossa on the jugal (also in allosauroids); a short retroarticular 

process; and a median vertical crest on the ilium. Similarly, the elongate anterior ramus 

of the maxilla and ischial foramen of Guanlong are unknown in other tyrannosauroids but 

are present in Monolophosaurus. 

 At the same time, however, Guanlong does possess several characters diagnostic 

of Coelurosauria and Tyrannosauroidea, which prompted testing by cladistic methods to 

resolve this homoplasy. Xu et al. (2006) inserted Guanlong into the basal theropod 

cladistic analysis of Rauhut (2003), which found both strong tree support and character 

support for placing Guanlong as a basal coelurosaur (a tyrannosauroid) and distant from 

the more basal tetanuran taxon Monolophosaurus. In particular, 22 unambiguous 
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synapomorphies place Guanlong within Coelurosauria, and seven place it within 

Tyrannosauroidea. Coelurosaurian characters include clear synapomorphies such as an 

elongate antorbita fossa (character 14), medially inclined iliac blades (171), an 

anteroposteriorly elongate and narrow pubic peduncle of the ilium (175), and a concave 

anterior margin of the pubic peduncle (179). Clear tyrannosauroid characters include the 

sharp and narrow vertical crest on the ilium (172) and a concave anterodorsal region of 

the preacetabular process of the ilium (173). Constraining Guanlong and 

Monolophosaurus as sister taxa in Benson’s (2008) updated version of the Xu et al. 

(2006) dataset requires an additional 19 steps, or 3% of tree length (693 vs. 674 steps). 

Thus, there is a strong phylogenetic signal linking Guanlong and tyrannosauroids, despite 

the homoplasy identified above. 

 We consider the coelurosaurian and basal tyrannosauroid position of Guanlong as 

a well-supported hypothesis based on current datasets. Our suggestion that 

Monolophosaurus is a much more basal tetanuran (see above) strengthens this 

hypothesis, as it increases the phylogenetic distance between the two taxa (as opposed to 

their separation by only two nodes in the Rauhut/Xu/Benson dataset) and would invoke 

additional homoplasy if the two formed a clade of crested basal tetanurans. However, a 

close affinity between Guanlong and Monolophosaurus, as suggested by Carr (2006), 

should be tested further. Most importantly, the two taxa have never been included in an 

analysis that recovers Monolophosaurus as a more basal tetanuran, and thus it is unclear 

what cost would be invoked by pulling Guanlong into this part of the tree. Additionally, 

the two putative synapomorphies of Guanlong and Monolophosaurus identified above, as 

well as some of the homoplastic tyrannosauroid “apomorphies” identified by Xu et al. 
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(2006), have yet to be included in an analysis. Ultimately, a large phylogenetic analysis 

of basal tetanurans and basal coelurosaurs is needed, but this is outside the scope of this 

paper.  

 As a final note, the fragmentary basal coelurosaur Proceratosaurus from the 

Bathonian of England (BMNH R 4860) possesses several unique characters of 

Monolophosaurus and Guanlong. Most notably, the external naris is enlarged (greater 

than 20% of skull length) and some form of thin cranial crest was present (although only 

the anterior region is preserved), features seen in both Monolophosaurus and Guanlong. 

Additionally, the form of the squamosal and quadratojugal is similar in Monolophosaurus 

and Proceratosaurus, as both taxa have a squamosal ventral ramus that is kinked and 

projects strongly forward into the lateral temporal fenestra. A close relationship between 

Monolophosaurus and Proceratosaurus is unlikely for the same reason as discussed 

above for Guanlong: Proceratosaurus possesses a number of coelurosaurian characters 

that place it in a more derived position among theropods than Monolophosaurus (e.g., 

Holtz et al., 2004). However, it appears as if Middle Jurassic basal coelurosaurs 

(Guanlong, Proceratosaurus) retained a number of more primitive tetanuran characters, 

and may have generally resembled basal tetanurans more so than closer coelurosaurian 

relatives. As Proceratosaurus is currently under study by O. Rauhut and A. Milner, it 

will not be discussed further here. 
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FIGURE LEGENDS 

 

Figure 1. Skull of Monolophosaurus jiangi in right lateral view, photograph (A) and line 

drawing (B). Abbreviations: ang, angular; d, dentary; en, external naris; f, frontal; j, 

jugal; jfor, jugal foramen; ldp, dorsal projection of the lacrimal; m, maxilla; n, nasal; 

nfen, nasal fenestrae; nfor, nasal foramina; nk, nasal knobs; pal, palatine; pf, prefrontal; 

po, postorbital; pm, premaxilla; q, quadrate; qj, quadratojugal; sa, surangular; sp, 

splenial; sq, squamosal. Numerals (e.g., p1) refer to premaxillary, maxillary, and dentary 

tooth positions. Scale bar represents 100 mm.  

 

Figure 2. Skull of Monolophosaurus jiangi in right lateral view. Photograph (A) and line 

drawing (B) of the anterior region of the snout and photograph (C) and line drawing (D) 

of the posterior region of the skull. Abbreviations: acf, accessory antorbital opening 

(fossa); antfos, antorbital fossa; for, foramen; forb, orbital rim of the frontal; gr, groove; 

ip, inflection point; jaf, jugal accessory foramen; jcp, jugal corneal process; jfor, jugal 

foramen; jrug, rugosity on the jugal; ldp, dorsal projection of the lacrimal; ltfos, lateral 

temporal fossa; mar, anterior ramus of the maxilla; masr, ascending ramus of the 

maxilla; mk, kink in the maxilla; nk, nasal knobs; npp, posterior projection of the nasal; 

por, postorbital rugosity; pmndp, dorsal projection of the nasal process of the 

premaxilla; pmnvp, ventral projection of the nasal process of the premaxilla; q, quadrate; 

qj, quadratojugal; snf, subnarial foramen; sop, suborbital projection; sqk, kink in the 

squamosal; sqpp, posterior process of the squamosal; sqs, squamosal shelf. Scale bar 

represents 100 mm. 
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Figure 3. The cranial crest of Monolophosaurus jiangi in right lateral view, photograph 

(A) and line drawing (B). Abbreviations: acf, accessory antorbital opening (fossa); fcr, 

frontal contribution to the crest; forb, orbital rim of the frontal; jaf, jugal accessory 

foramen; ldp, dorsal projection of the lacrimal; mantfoss, antorbital fossa on the maxilla; 

nantfoss, antorbital fossa on the nasal; nfen, nasal fenestrae; nfor, nasal foramina; nk, 

nasal knobs; npp, posterior projection of the nasal; pal, palatine; pmmp, maxillary 

process of the premaxilla; pmnvp, ventral projection of the nasal process of the 

premaxilla; po, postorbital. Scale bar represents 100 mm. 

 

Figure 4. The cranial crest of Monolophosaurus jiangi in dorsolateral (dorsal and slightly 

oblique) view, photograph (A) and line drawing (B). Abbreviations: f, frontal; fcr, frontal 

contribution to the crest; forb, orbital rim of the frontal; lar, lacrimal anterior ramus; ldp, 

dorsal projection of the lacrimal; n, nasal; nfen, nasal fenestrae; npp, posterior projection 

of the nasal; pa, parietal; pf, prefrontal; po, postorbital; sq, squamosal; stfen, 

supratemporal fenestra; stfos, supratemporal fossa. Scale bar represents 50 mm. 

 

Figure 5. The posterior skull region of Monolophosaurus jiangi in right lateral view, 

photograph (A) and line drawing (B). Abbreviations: ltfos, lateral temporal fossa; pro, 

projection into the lateral temporal fenestra; q, quadrate; qj, quadratojugal; sq, 

squamosal; sqk, kink in the squamosal; sqpp, posterior process of the squamosal; sqs, 

squamosal shelf. Scale bar represents 50 mm. 
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Figure 6. The braincase of Monolophosaurus jiangi in right lateral view (looking within 

the lateral temporal fenestra), photograph (A) and line drawing (B). Abbreviations: atr, 

anterior tympanic recess; bs, basisphenoid; dtr, dorsal tympanic recess; eo, exoccipital-

opisthotic; epi, epipterygoid; fo, fenestra ovalis; ls, laterosphenoid; pa, parietal; pn, 

pneumatopore; pr, prootic; pt, pterygoid; q, quadrate; V, foramen for cranial nerve V; 

VII, foramen for cranial nerve VII. 

 

Figure 7. The posterior region of the lower jaw of Monolophosaurus jiangi in right 

lateral view, photograph (A) and line drawing (B). Abbreviations: ang, angular; angpp, 

posterior projection of the angular; emf, external mandibular fenestra; d18, dentary 

alveolus 18; for, foramen; fos, fossa; gr, groove; sa, surangular, saf, surangular foramen; 

san, surangular notch; smo, smooth region dorsal to the surangular foramen; sp, splenial. 

Scale bar represents 100 mm. 
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TABLE 1: External naris size in theropods. Ratio of the greatest dimension of the naris to 
cranium length, measured from the anterior margin of the premaxilla to the posterior 
margin of the quadratojugal. Only those taxa with nearly complete, articulated skulls are 
included. 
 
Taxon   Ratio Source 
Monolophosaurus 0.25 IVPP 84019 
Acrocanthosaurus 0.12 Currie & Carpenter, 2000 
Allosaurus  0.17 Madsen, 1976 
Ceratosaurus  0.14 Sampson & Witmer, 2007 
Citipati  0.21 Clark et al., 2002 
Compsognathus 0.14 Peyer, 2006 
Dilophosaurus  0.15 Welles, 1984; Tykoski & Rowe, 2004 
Erlikosaurus  0.25 Clark et al., 1994 
Guanlong  0.26 Xu et al., 2006 
Majungasaurus 0.09 Sampson & Witmer, 2007 
Ornithomimus  0.13 Makovicky et al., 2004 
Sinraptor  0.13 Currie & Zhao, 1993 
“Syntarsus”  0.14 Tykoski & Rowe, 2004 
Tyrannosaurus 0.15 Holtz, 2004 
Velociraptor  0.12 Barsbold & Osmolska 1999 
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TABLE 2: Measurements of the alveoli and erupted teeth. Mesiodistal and labiolingual 
measurements refer to the alveoli and CBL (crown base length) and CBW (crown base 
width) refer to the teeth, following the terminology of Smith & Dodson (2003). 
Measurements taken from the right skull elements, all measurements in millimeters. Only 
clear erupted teeth not heavily reconstructed by plaster are included. 
 
Element Alveolus Mesiodistal Labiolingual CBL CBW 
Premaxilla 1  11  9  —  — 
  2  15  11  —  — 
  3  18  11  —  — 
  4  17  14  —  — 
Maxilla 1  22  12  —  — 
  2  20  10  —  — 
  3  21  10  —  — 
  4  20  10  —  — 
  5  22  12  —  — 
  6  23  12  —  — 
  7  18  10  —  — 
  8  24  12  —  — 
  9  18  9  —  — 
  10  21  8  —  — 
  11  15  5  —  — 
  12  10  5  —  — 
  13  7  4  —  — 
Dentary 1  6  5  —  —    
  2  8  6  —  — 
  3  10  6  9 5 
  4  10  6  —  — 
  5  14  9  13 6 
  6  16  9  16 6 
  7  13  9  13 5 
  8  15  10  14 6 
  9  15  10  14 6 
  10  10  9  7 3 
  11  15  10  15 7 
  12  12  9  11 4 
  13  10  8  —  — 
  14  13  8  12 4 
  15  14  5  —  — 
  16  9  5  —  — 
  17  6  4  5 3 
  18  5  3  4 2 
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APPENDIX 1 

 

Phylogenetic Analysis: We have checked all characters for Monolophosaurus in the 

analysis of Smith et al. (2007) and provide the following rescored block of data: 

 

1?20000102??001100?0001210000??1000001111101021?100100000001101100000001

000010001210010001000?110?0??1?1011000?0???????10100100011110?010???????1?

1110?10?010020?0000000110?1?100011020????0?0?0???0??????????????????????????

?????????????????????????????010?001001?0{01}011111000?0000???00?00000??????

???????????????????????????????????????????????????? 

 

We have also slightly rescored character 315, which is now scored for absent (0) in 

Afrovenator, Dubreuillosaurus, Eustreptospondylus, and Torvosaurus. 
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APPENDIX 2 

 

Cranial Crests as Phylogenetic Characters: We favour the following three characters to 

encapsulate phylogenetically informative variation among the cranial crests of theropod 

dinosaurs: 

1) Nasals, profile of dorsal surface: convex or flat (0); transversely concave due to offset 

lateral ridges (1); rises into sheet-like parasagittal crests (2). 

2) Nasals, anteroposteriorly short midline horn: absent (0); present (1). 

3) Nasals, inflated and hollowed by series of pneumatic chambers: no (0); yes (1). Note: 

when considering a wider range of theropods the derived state can be divided into: 

slightly inflated (1) and highly inflated (2), with the latter condition characterizing 

Guanlong, Monolphosaurus, and some oviraptorosaurs. 

 

These characters are scored as follows in the taxa utilised by Smith et al. (2007): 

Marasuchus ??? 
Silesaurus 000 
Herrerasaurus 000 
Eoraptor 000 
Saturnalia ??? 
Plateosaurus 000 
Coelophysis bauri 200 
Coelophysis rhodesiensis 200 
“Syntarsus” kayentakatae 200 
Segisaurus ??? 
Liliensternus ??? 
Zupaysaurus 000 
Dilophosaurus sinensis 200 
Dracovenator ??? 
Dilophosaurus wetherilli 200 
Cryolophosaurus 100 
Elaphrosaurus ??? 
Ceratosaurus 010 
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Ilokelesia ??? 
Abelisaurus 00? 
Carnotaurus 000 
Majungasaurus 001 
Masiakasaurus ??? 
Noasaurus ??? 
Piatnitzkysaurus ??? 
Condorraptor ??? 
Dubreuillosaurus ??? 
Afrovenator ??? 
Torvosaurus ??? 
Eustreptospondylus ??? 
Streptospondylus ??? 
Baryonyx 010 
Suchomimus ??? 
Irritator 010 
Monolophosaurus 001 
Sinraptor 000 
Tyrannotitan ??? 
Megaraptor ??? 
Carcharodontosaurus 000 
Giganotosaurus 000 
Acrocanthosaurus 000 
Allosaurus 100 
Neovenator 100 
Tugulusaurus ??? 
Dilong 000 
Tyrannosaurus 001 
Coelurus ??? 
Compsognathus 000 
Sinosauropteryx 000 
Shenzhousaurus 000 
Sinornithosaurus 000 
Ornitholestes 000 
Deinonychus 000 
Velociraptor 000 
Archaeopteryx 000 
Confuciusornis 000 
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