11 research outputs found
CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in the global pest, diamondback moth (Plutella xylostella).
The diamondback moth, Plutella xylostella (L.), is a worldwide agricultural pest that has developed resistance to multiple classes of insecticides. Genetics-based approaches show promise as alternative pest management approaches but require functional studies to identify suitable gene targets. Here we use the CRISPR/Cas9 system to target a gene, abdominal-A, which has an important role in determining the identity and functionality of abdominal segments. We report that P. xylostella abdominal-A (Pxabd-A) has two structurally-similar splice isoforms (A and B) that differ only in the length of exon II, with 15 additional nucleotides in isoform A. Pxabd-A transcripts were detected in all developmental stages, and particularly in pupae and adults. CRISPR/Cas9-based mutagenesis of Pxabd-A exon I produced 91% chimeric mutants following injection of 448 eggs. Phenotypes with abnormal prolegs and malformed segments were visible in hatched larvae and unhatched embryos, and various defects were inherited by the next generation (G1). Genotyping of mutants demonstrated several mutations at the Pxabd-A genomic locus. The results indicate that a series of insertions and deletions were induced in the Pxabd-A locus, not only in G0 survivors but also in G1 individuals, and this provides a foundation for genome editing. Our study demonstrates the utility of the CRISPR/Cas9 system for targeting genes in an agricultural pest and therefore provides a foundation the development of novel pest management tools
Curcumin Alleviates Hepatic Ischemia-Reperfusion Injury by Inhibiting Neutrophil Extracellular Traps Formation
Background Hepatic ischemia-reperfusion injury (IRI) is a common innate immune-mediated sterile inflammatory response in liver transplantation and liver tumor resection. Neutrophil extracellular traps (NETs) can aggravate liver injury and activates innate immune response in the process of liver IRI. However, Curcumin (Cur) can reverse this damage and reduce NETs formation. Nevertheless, the specific regulatory mechanism is still unclear in liver IRI. This study aimed to explore the potential mechanisms that how does Cur alleviate hepatic IRI by inhibits NETs production and develop novel treatment regimens. Methods We established a hepatic IRI model by subjecting C57BL/6J mice to 60 min of ischemia, followed by reperfusion for 2 h, 6 h, 12 h, and 24 h respectively. Subsequently, we were separated into 5 groups, namely the I/R group, Cur group, DNase-1 group, Cur + DNase1 group and sham operation group. Serum alanine aminotransferase (ALT) and aspartate transaminase (AST), Hematoxylin-eosin staining, immunofluorescence, and TUNEL analysis were applied to assess liver injury degree and NETs levels. Western blot assay was used to detect the protein levels of apoptosis-related proteins and MEK pathway proteins. Results Cur could alleviate hepatic IRI by inhibiting the generation of NETs via suppressing the MEK/ERK pathway. In addition, this study also revealed that DNase-1 is vital for alleviating hepatic IRI by reducing the generation of NETs. Conclusions Cur combined with DNase-1 was more effective than the two drugs administered alone in alleviating hepatic IRI by inhibiting the generation of NETs. These results also suggested that curcumin combined with DNase-1 was a potential therapeutic strategy to mitigate hepatic IRI
Genome evolution and diversity of wild and cultivated potatoes
Potato (Solanum tuberosum L.) is the world’s most important non-cereal food crop, and the vast majority of commercially grown cultivars are highly heterozygous tetraploids. Advances in diploid hybrid breeding based on true seeds have the potential to revolutionize future potato breeding and production1–4. So far, relatively few studies have examined the genome evolution and diversity of wild and cultivated landrace potatoes, which limits the application of their diversity in potato breeding. Here we assemble 44 high-quality diploid potato genomes from 24 wild and 20 cultivated accessions that are representative of Solanum section Petota, the tuber-bearing clade, as well as 2 genomes from the neighbouring section, Etuberosum. Extensive discordance of phylogenomic relationships suggests the complexity of potato evolution. We find that the potato genome substantially expanded its repertoire of disease-resistance genes when compared with closely related seed-propagated solanaceous crops, indicative of the effect of tuber-based propagation strategies on the evolution of the potato genome. We discover a transcription factor that determines tuber identity and interacts with the mobile tuberization inductive signal SP6A. We also identify 561,433 high-confidence structural variants and construct a map of large inversions, which provides insights for improving inbred lines and precluding potential linkage drag, as exemplified by a 5.8-Mb inversion that is associated with carotenoid content in tubers. This study will accelerate hybrid potato breeding and enrich our understanding of the evolution and biology of potato as a global staple food crop