1,611 research outputs found

    The effects of local voids and imperfections of surrounding rock on the performance of existing tunnel lining

    Get PDF
    Local voids and imperfections may exist around the tunnel due to reasons such as inadequate back infill behind the lining, insufficient local lining thickness, ground water erosion, and other imperfect construction related activities. Such local voids and imperfections generally will lead to local contact loss and discontinuity in the ground-lining interaction. This paper evaluates the effect of local voids and imperfections developing around the tunnel vault area on the mechanical performance of tunnel lining. Based on field investigation results, a series of voids and imperfections with different geometries are defined to reflect cases resulting from different causes. Numerical parametric analyses were performed to investigate how those voids and imperfections influence the internal force and the safety factor of the lining, and the reinforced concrete lining were modelled with the smeared crack model to examine the development of cracking directions and patterns. Furthermore, the numerical approach was verified by comparing with field investigations and measurements. This study aims to investigate the most unsafe situation due to local voids and imperfections around the tunnel, and the modelled cracking feature shows a way to preliminary evaluate the possible local voids and imperfections behind tunnel lining based on field observation

    A modeling framework to assess the crop production potential of green roofs

    Get PDF
    The increase in food demand and limited opportunities to expand agricultural land pose a threat to local and global food security. Producing food in urban areas such as green roofs can help satisfy urban food demand and thus alleviate pressure on agricultural land. However, a modeling framework that simulates crop growth and production potential on green roofs at a city scale is missing. Here, we adapt the Aquacrop model to explore the growth potential of various types of crops on green roofs and apply it to suitable roof areas in the city of Amsterdam. Our modeling framework includes irrigation methods for water use on green roofs that are optimized according to various climate-driven scenarios of water availability. We find that cabbage has the maximum achievable crop yields ranging from 30.8 to 75.9 t ha-1 yr-1, while pea has the minimum achievable crop yields ranging from 1.7 to 6.4 t ha-1 yr-1. The potential suitable green roof area (i.e., roofs with a certain slope and bearing capacity) for Amsterdam is roughly 400 ha for crop production. This represents 16 % of the total rooftop areas of Amsterdam and can produce up to a total of 28 kt of crops on an annual basis. Our modeling framework can be easily applied to other cities to identify the crop growth potential of green roofs. Our results can help policymakers and urban planners find optimal planting strategies and contribute to shorter food supply chains.Industrial Ecolog

    Survival probability and order statistics of diffusion on disordered media

    Full text link
    We investigate the first passage time t_{j,N} to a given chemical or Euclidean distance of the first j of a set of N>>1 independent random walkers all initially placed on a site of a disordered medium. To solve this order-statistics problem we assume that, for short times, the survival probability (the probability that a single random walker is not absorbed by a hyperspherical surface during some time interval) decays for disordered media in the same way as for Euclidean and some class of deterministic fractal lattices. This conjecture is checked by simulation on the incipient percolation aggregate embedded in two dimensions. Arbitrary moments of t_{j,N} are expressed in terms of an asymptotic series in powers of 1/ln N which is formally identical to those found for Euclidean and (some class of) deterministic fractal lattices. The agreement of the asymptotic expressions with simulation results for the two-dimensional percolation aggregate is good when the boundary is defined in terms of the chemical distance. The agreement worsens slightly when the Euclidean distance is used.Comment: 8 pages including 9 figure

    Against all odds? Forming the planet of the HD196885 binary

    Full text link
    HD196885Ab is the most "extreme" planet-in-a-binary discovered to date, whose orbit places it at the limit for orbital stability. The presence of a planet in such a highly perturbed region poses a clear challenge to planet-formation scenarios. We investigate this issue by focusing on the planet-formation stage that is arguably the most sensitive to binary perturbations: the mutual accretion of kilometre-sized planetesimals. To this effect we numerically estimate the impact velocities dvdv amongst a population of circumprimary planetesimals. We find that most of the circumprimary disc is strongly hostile to planetesimal accretion, especially the region around 2.6AU (the planet's location) where binary perturbations induce planetesimal-shattering dvdv of more than 1km/s. Possible solutions to the paradox of having a planet in such accretion-hostile regions are 1) that initial planetesimals were very big, at least 250km, 2) that the binary had an initial orbit at least twice the present one, and was later compacted due to early stellar encounters, 3) that planetesimals did not grow by mutual impacts but by sweeping of dust (the "snowball" growth mode identified by Xie et al., 2010b), or 4) that HD196885Ab was formed not by core-accretion but by the concurent disc instability mechanism. All of these 4 scenarios remain however highly conjectural.Comment: accepted for publication by Celestial Mechanics and Dynamical Astronomy (Special issue on EXOPLANETS

    Battery energy management strategies for UK firm frequency response services and energy arbitrage

    Get PDF
    Due to the increasing renewable penetration, there is potential for larger and faster grid frequency fluctuations increasing the risk of system instability. The National Grid Electricity Transmission, primary electricity transmission network operator in the UK, has introduced various frequency response services that are developed to provide a real-time response to deviations in the grid frequency. A battery energy storage system is a suitable choice for delivering such services. Here, a control algorithm is presented which generates a charge/discharge power output with respect to deviations in the grid frequency and the required specifications. Using the real UK electricity prices, an arbitrage control algorithm has been also developed to deliver different types of grid balancing services, while scheduling throughout the day for energy arbitrage. Simulation results show that the proposed algorithm delivers both dynamic and non-dynamic firm frequency response and also enhanced frequency response to specifications, while generating arbitrage revenue in the balancing market. Simulation results on a 1 MW/1 MWh lithium-titanate BESS are provided to verify the proposed algorithm based on the control of an experimentally validated battery model

    Study of Thermal Properties of Graphene-Based Structures Using the Force Constant Method

    Full text link
    The thermal properties of graphene-based materials are theoretically investigated. The fourth-nearest neighbor force constant method for phonon properties is used in conjunction with both the Landauer ballistic and the non-equilibrium Green's function techniques for transport. Ballistic phonon transport is investigated for different structures including graphene, graphene antidot lattices, and graphene nanoribbons. We demonstrate that this particular methodology is suitable for robust and efficient investigation of phonon transport in graphene-based devices. This methodology is especially useful for investigations of thermoelectric and heat transport applications.Comment: 23 pages, 9 figures, 1 tabl

    Levitation of quantum Hall critical states in a lattice model with spatially correlated disorder

    Full text link
    The fate of the current carrying states of a quantum Hall system is considered in the situation when the disorder strength is increased and the transition from the quantum Hall liquid to the Hall insulator takes place. We investigate a two-dimensional lattice model with spatially correlated disorder potentials and calculate the density of states and the localization length either by using a recursive Green function method or by direct diagonalization in connection with the procedure of level statistics. From the knowledge of the energy and disorder dependence of the localization length and the density of states (DOS) of the corresponding Landau bands, the movement of the current carrying states in the disorder--energy and disorder--filling-factor plane can be traced by tuning the disorder strength. We show results for all sub-bands, particularly the traces of the Chern and anti-Chern states as well as the peak positions of the DOS. For small disorder strength WW we recover the well known weak levitation of the critical states, but we also reveal, for larger WW, the strong levitation of these states across the Landau gaps without merging. We find the behavior to be similar for exponentially, Gaussian, and Lorentzian correlated disorder potentials. Our study resolves the discrepancies of previously published work in demonstrating the conflicting results to be only special cases of a general lattice model with spatially correlated disorder potentials. To test whether the mixing between consecutive Landau bands is the origin of the observed floating, we truncate the Hilbert space of our model Hamiltonian and calculate the behavior of the current carrying states under these restricted conditions.Comment: 10 pages, incl. 13 figures, accepted for publication in PR

    The Lunar Mare Ring-Moat Dome Structure (RMDS) Age Conundrum:Contemporaneous With Imbrian-Aged Host Lava Flows or Emplaced in the Copernican?

    Get PDF
    Ring-moat dome structures (RMDSs) are small circular mounds of diameter typically about 200 m and ∼3–4 m in height, surrounded by narrow, shallow moats. They occur in clusters, are widespread in ancient Imbrian-aged mare basalt host units and show mineralogies comparable to those of their host units. Based on these close associations and similarities, a model has been proposed for the formation of RMDS as the result of late-stage flow inflation, with second boiling releasing quantities of magmatic volatiles that migrate to the top of the flow as magmatic foams and extrude through cracks in the cooled upper part of the flow to produce the small RMDS domes and surrounding moats. In contrast to this model advocating a contemporaneous emplacement of RMDSs and their host lava flows, a range of observations suggests that the RMDS formed significantly after the emplacement and cooling of their host lava flows, perhaps as recently as in the Copernican Period (∼1.1 Ga to the present). These observations include: (a) stratigraphic embayment of domes into post-lava flow emplacement impact craters; (b) young crater degradation age estimates for the underlying embayed craters; (c) regolith development models that predict thicknesses in excess of the observed topography of domes and moats; (d) landform diffusional degradation models that predict very young ages for mounds and moats; (e) suggestions of fewer superposed craters on the mounds than on the adjacent host lava flows, and (f) observations of superposed craters that suggest that the mound substrate does not have the properties predicted by the magmatic foam model. Together, these observations are consistent with the RMDS formation occurring during the period after the extrusion and solidification of the host lava flows, up to and including the geologically recent Late Copernican, that is, the last few hundreds of millions of years of lunar history. We present and discuss each of these contradictory data and interpretations and summarize the requirements for magma ascent and eruption models that might account for young RMDS ages. We conclude with a discussion of the tests and future research and exploration that might help resolve the RMDS age and mode of emplacement conundrum

    Electron-Hole Correlations and Optical Excitonic Gaps in Quantum-Dot Quantum Wells: Tight-Binding Approach

    Full text link
    Electron-hole correlation in quantum-dot quantum wells (QDQW's) is investigated by incorporating Coulomb and exchange interactions into an empirical tight-binding model. Sufficient electron and hole single-particle states close to the band edge are included in the configuration to achieve convergence of the first spin-singlet and triplet excitonic energies within a few meV. Coulomb shifts of about 100 meV and exchange splittings of about 1 meV are found for CdS/HgS/CdS QDQW's (4.7 nm CdS core diameter, 0.3 nm HgS well width and 0.3 nm to 1.5 nm CdS clad thickness) which have been characterized experimentally by Weller and co-workers [ D. Schooss, A. Mews, A. Eychmuller, H. Weller, Phys. Rev. B, 49, 17072 (1994)]. The optical excitonic gaps calculated for those QDQW's are in good agreement with the experiment.Comment: 3 figures, to appear in Phys.Rev.
    corecore