100 research outputs found

    Study on the Dephenolization of wastewater of coal chemical industry

    Get PDF
    Coal chemical wastewater contains large number of phenolic substances, which cause great harm to the environment. The dephenolization of wastewater from coal chemical enterprises was investigated. Through the combined treatment of oil removal, concentration, adsorption and other processes, the final processing results achieved the anticipated goal.&nbsp

    Transcriptional Response of Selenopolypeptide Genes and Selenocysteine Biosynthesis Machinery Genes in Escherichia coli during Selenite Reduction

    Get PDF
    This work was supported by a United States Department of Agriculture-Cooperative State Research, Education, and Extension Service grant (no. 2009-35318-05032), a Biotechnology Research grant (no. 2007-BRG-1223) from the North Carolina Biotechnology Center, and a startup fund from the Golden LEAF Foundation to the Biomanufacturing Research Institute and Technology Enterprise (BRITE).Bacteria can reduce toxic selenite into less toxic, elemental selenium (Se0), but the mechanism on how bacterial cells reduce selenite at molecular level is still not clear. We used Escherichia coli strain K12, a common bacterial strain, as a model to study its growth response to sodium selenite (Na2SeO3) treatment and then used quantitative real-time PCR (qRT-PCR) to quantify transcript levels of three E. coli selenopolypeptide genes and a set of machinery genes for selenocysteine (SeCys) biosynthesis and incorporation into polypeptides, whose involvements in the selenite reduction are largely unknown. We determined that 5 mM Na2SeO3 treatment inhibited growth by ∼50% while 0.001 to 0.01 mM treatments stimulated cell growth by ∼30%. Under 50% inhibitory or 30% stimulatory Na2SeO3 concentration, selenopolypeptide genes (fdnG, fdoG, and fdhF) whose products require SeCys but not SeCys biosynthesis machinery genes were found to be induced ≥2-fold. In addition, one sulfur (S) metabolic gene iscS and two previously reported selenite-responsive genes sodA and gutS were also induced ≥2-fold under 50% inhibitory concentration. Our findings provide insight about the detoxification of selenite in E. coli via induction of these genes involved in the selenite reduction process.Publisher PDFPeer reviewe

    Quantum Interference of Stored Coherent Spin-wave Excitations in a Two-channel Memory

    Full text link
    Quantum memories are essential elements in long-distance quantum networks and quantum computation. Significant advances have been achieved in demonstrating relative long-lived single-channel memory at single-photon level in cold atomic media. However, the qubit memory corresponding to store two-channel spin-wave excitations (SWEs) still faces challenges, including the limitations resulting from Larmor procession, fluctuating ambient magnetic field, and manipulation/measurement of the relative phase between the two channels. Here, we demonstrate a two-channel memory scheme in an ideal tripod atomic system, in which the total readout signal exhibits either constructive or destructive interference when the two-channel SWEs are retrieved by two reading beams with a controllable relative phase. Experimental result indicates quantum coherence between the stored SWEs. Based on such phase-sensitive storage/retrieval scheme, measurements of the relative phase between the two SWEs and Rabi oscillation, as well as elimination of the collapse and revival of the readout signal, are experimentally demonstrated

    SWE-SPHysics Simulation of Dam Break Flows at South-Gate Gorges Reservoir

    Get PDF
    This paper applied a Smoothed Particle Hydrodynamics (SPH) approach to solve Shallow Water Equations (SWEs) to study practical dam-break flows. The computational program is based on the open source code SWE-SPHysics, where a Monotone Upstream-centered Scheme for Conservation Laws (MUSCL) reconstruction method is used to improve the Riemann solution with Lax-Friedrichs flux. A virtual boundary particle method is applied to treat the solid boundary. The model is first tested on two benchmark collapses of water columns with the existence of downstream obstacle. Subsequently the model is applied to forecast a prototype dam-break flood, which might occur in South-Gate Gorges Reservoir area of Qinghai Province, China. It shows that the SWE-SPH modeling approach could provide a promising simulation tool for practical dam-break flows in engineering scale

    Correlation and entanglement of two-component Bose-Einstein condensates in a double well

    Full text link
    We consider a novel system of two-component atomic Bose-Einstein condensate in a double-well potential. Based on the well-known two-mode approximation, we demonstrate that there are obvious avoided level-crossings when both interspecies and intraspecies interactions of two species are increased. The quantum dynamics of the system exhibits revised oscillating behaviors compared with a single component condensate. We also examine the entanglement of two species. Our numerical calculations show the onset of entanglement can be signed as a violation of Cauchy-Schwarz inequality of second-order cross correlation function. Consequently, we use Von Neumann entropy to quantity the degree of entanglement

    Identification of wounding and topping responsive small RNAs in tobacco (Nicotiana tabacum)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are two major classes of small RNAs. They play important regulatory roles in plants and animals by regulating transcription, stability and/or translation of target genes in a sequence-complementary dependent manner. Over 4,000 miRNAs and several classes of siRNAs have been identified in plants, but in tobacco only computational prediction has been performed and no tobacco-specific miRNA has been experimentally identified. Wounding is believed to induce defensive response in tobacco, but the mechanism responsible for this response is yet to be uncovered.</p> <p>Results</p> <p>To get insight into the role of small RNAs in damage-induced responses, we sequenced and analysed small RNA populations in roots and leaves from wounding or topping treated tobacco plants. In addition to confirmation of expression of 27 known miRNA families, we identified 59 novel tobacco-specific miRNA members of 38 families and a large number of loci generating phased 21- or 24-nt small RNAs (including ta-siRNAs). A number of miRNAs and phased small RNAs were found to be responsive to wounding or topping treatment. Targets of small RNAs were further surveyed by degradome sequencing.</p> <p>Conclusions</p> <p>The expression changes of miRNAs and phased small RNAs responsive to wounding or topping and identification of defense related targets for these small RNAs suggest that the inducible defense response in tobacco might be controlled by pathways involving small RNAs.</p

    SPHysics Simulation of Experimental Spillway Hydraulics

    Get PDF
    In this paper, we use the parallel open source code parallelSPHysics based on the weakly compressible Smoothed Particle Hydrodynamics (WCSPH) approach to study a spillway flow over stepped stairs. SPH is a robust mesh-free particle modelling technique and has great potential in treating the free surfaces in spillway hydraulics. A laboratory experiment is carried out for the different flow discharges and spillway step geometries. The physical model is constructed from a prototype reservoir dam in the practical field. During the experiment, flow discharge over the weir crest, free surface, velocity and pressure profiles along the spillway are measured. In the present SPH study, a straightforward push-paddle model is used to generate the steady inflow discharge in front of the weir. The parallelSPHysics model is first validated by a documented benchmark case of skimming flow over a stepped spillway. Subsequently, it is used to reproduce a laboratory experiment based on a prototype hydraulic dam project located in Qinghai Province, China. The detailed comparisons are made on the pressure profiles on the steps between the SPH results and experimental data. The energy dissipation features of the flows under different flow conditions are also discussed. It is shown that the pressure on the horizontal face of the steps demonstrates an S-shape, while on the vertical face it is negative on the upper part and positive on the lower part. The energy dissipation efficiency of the spillway could reach nearly 80%

    Deformed Two-Mode Quadrature Operators in Noncommutative Space

    Full text link
    Starting from noncommutative quantum mechanics algebra, we investigate the variances of the deformed two-mode quadrature operators under the evolution of three types of two-mode squeezed states in noncommutative space. A novel conclusion can be found and it may associate the checking of the variances in noncommutative space with homodyne detecting technology. Moreover, we analyze the influence of the scaling parameter on the degree of squeezing for the deformed level and the corresponding consequences.Comment: 11 pages, no figure

    In Vivo Wound Healing Activity of Abrus cantoniensis

    Get PDF
    Abrus cantoniensis (Leguminosae sp.) is a traditionally used remedy for treating rheumatism, blood stasis, and internal injuries. In order to reveal a new insight of the utilization of the plant, solvent extraction by ethyl acetate (EA) was performed in order to evaluate the plant extracts’ in vivo excision and incision-wound potentials with models. The contents of the EA fraction, wound healing activity, acute oral toxicity, and acute dermal toxicity were studied. As a result, the main chemical constituents of the EA fraction were alkaloids, flavonoids, and steroids. The acute oral toxicity test results and assessment of skin hypoallergenicity showed that the plant extract was safe at LD50 as high as 5000 mg/kg. Both excision and incision model tests results indicated that the EA fraction of A. cantoniensis showed a significant wound healing capacity at a concentration of 5% (v/w) (p<0.01) as observed by the increased wound contraction, decreased epithelialization time, and increased hydroxyproline content compared to the ones of the controls. The present study showed that the EA fraction of A. cantoniensis possesses potential wound healing activities and provided recent results for the use of A. cantoniensis for wound curing

    Exosomes Derived from Dendritic Cells Treated with Schistosoma japonicum Soluble Egg Antigen Attenuate DSS-Induced Colitis

    Get PDF
    Exosomes are 30–150 nm small membrane vesicles that are released into the extracellular medium via cells that function as a mode of intercellular communication. Dendritic cell (DC)-derived exosomes modulate immune responses and prevent the development of autoimmune diseases. Moreover, Schistosoma japonicum eggs show modulatory effects in a mouse model of colitis. Therefore, we hypothesized that exosomes derived from DCs treated with S. japonicum soluble eggs antigen (SEA; SEA-treated DC exosomes) would be useful for treating inflammatory bowel disease (IBD). Exosomes were purified from the supernatant of DCs treated or untreated with SEA and identified via transmission electron microscopy, western blotting and NanoSight. Acute colitis was induced via the administration of dextran sulfate sodium (DSS) in drinking water (5.0%, wt/vol). Treatment with exosomes was conducted via intraperitoneal injection (i.p.; 50 μg per mouse) from day 0 to day 6. Clinical scores were calculated based on weight loss, stool type, and bleeding. Colon length was measured as an indirect marker of inflammation, and colon macroscopic characteristics were determined. Body weight loss and the disease activity index of DSS-induced colitis mice decreased significantly following treatment with SEA-treated DC exosomes. Moreover, the colon lengths of SEA-treated DC exosomes treated colitis mice improved, and their mean colon macroscopic scores decreased. In addition, histologic examinations and histological scores showed that SEA-treated DC exosomes prevented colon damage in acute DSS-induced colitis mice. These results indicate that SEA-treated DC exosomes attenuate the severity of acute DSS-induced colitis mice more effectively than DC exosomes. The current work suggests that SEA-treated DC exosomes may be useful as a new approach to treat IBD
    corecore