39 research outputs found

    The ITGB6 gene: its role in experimental and clinical biology.

    Get PDF
    Integrin ιvβ6 is a membrane-spanning heterodimeric glycoprotein involved in wound healing and the pathogenesis of diseases including fibrosis and cancer. Therefore, it is of great clinical interest for us to understand the molecular mechanisms of its biology. As the limiting binding partner in the heterodimer, the β6 subunit controls ιvβ6 expression and availability. Here we describe our understanding of the ITGB6 gene encoding the β6 subunit, including its structure, transcriptional and post-transcriptional regulation, the biological effects observed in ITGB6 deficient mice and clinical cases of ITGB6 mutations

    Change in Albuminuria and GFR Slope as Joint Surrogate End Points for Kidney Failure:Implications for Phase 2 Clinical Trials in CKD

    Get PDF
    Significance Statement: Changes in albuminuria and GFR slope are individually used as surrogate end points in clinical trials of CKD progression, and studies have demonstrated that each is associated with treatment effects on clinical end points. In this study, the authors sought to develop a conceptual framework that combines both surrogate end points to better predict treatment effects on clinical end points in Phase 2 trials. The results demonstrate that information from the combined treatment effects on albuminuria and GFR slope improves the prediction of treatment effects on the clinical end point for Phase 2 trials with sample sizes between 100 and 200 patients and duration of follow-up ranging from 1 to 2 years. These findings may help inform design of clinical trials for interventions aimed at slowing CKD progression.Background Changes in log urinary albumin-To-creatinine ratio (UACR) and GFR slope are individually used as surrogate end points in clinical trials of CKD progression. Whether combining these surrogate end points might strengthen inferences about clinical benefit is unknown.Methods Using Bayesian meta-regressions across 41 randomized trials of CKD progression, we characterized the combined relationship between the treatment effects on the clinical end point (sustained doubling of serum creatinine, GFR &lt;15 ml/min per 1.73 m2, or kidney failure) and treatment effects on UACR change and chronic GFR slope after 3 months. We applied the results to the design of Phase 2 trials on the basis of UACR change and chronic GFR slope in combination.Results Treatment effects on the clinical end point were strongly associated with the combination of treatment effects on UACR change and chronic slope. The posterior median meta-regression coefficients for treatment effects were-0.41 (95% Bayesian Credible Interval,-0.64 to-0.17) per 1 ml/min per 1.73 m2per year for the treatment effect on GFR slope and-0.06 (95% Bayesian Credible Interval,-0.90 to 0.77) for the treatment effect on UACR change. The predicted probability of clinical benefit when considering both surrogates was determined primarily by estimated treatment effects on UACR when sample size was small (approximately 60 patients per treatment arm) and follow-up brief (approximately 1 year), with the importance of GFR slope increasing for larger sample sizes and longer follow-up.Conclusions In Phase 2 trials of CKD with sample sizes of 100-200 patients per arm and follow-up between 1 and 2 years, combining information from treatment effects on UACR change and GFR slope improved the prediction of treatment effects on clinical end points.</p

    Acute Treatment Effects on GFR in Randomized Clinical Trials of Kidney Disease Progression

    Get PDF
    Background: Acute changes in GFR can occur after initiation of interventions targeting progression of CKD. These acute changes complicate the interpretation of long-term treatment effects. Methods: To assess the magnitude and consistency of acute effects in randomized clinical trials and explore factors that might affect them, we performed a meta-analysis of 53 randomized clinical trials for CKD progression, enrolling 56,413 participants with at least one estimated GFR measurement by 6 months after randomization. We defined acute treatment effects as the mean difference in GFR slope from baseline to 3 months between randomized groups. We performed univariable and multivariable metaregression to assess the effect of intervention type, disease state, baseline GFR, and albuminuria on the magnitude of acute effects. Results: The mean acute effect across all studies was 20.21 ml/min per 1.73 m2 (95% confidence interval, 20.63 to 0.22) over 3 months, with substantial heterogeneity across interventions (95% coverage interval across studies, 22.50 to 12.08 ml/min per 1.73 m2). We observed negative average acute effects in renin angiotensin system blockade, BP lowering, and sodium-glucose cotransporter 2 inhibitor trials, and positive acute effects in trials of immunosuppressive agents. Larger negative acute effects were observed in trials with a higher mean baseline GFR. Conclusion: The magnitude and consistency of acute GFR effects vary across different interventions, and are larger at higher baseline GFR. Understanding the nature and magnitude of acute effects can help inform the optimal design of randomized clinical trials evaluating disease progression in CKD

    Screening of PI3K-Akt-targeting Drugs for Silkworm against <i>Bombyx mori</i> Nucleopolyhedrovirus

    No full text
    Bombyx mori nucleopolyhedrovirus (BmNPV) is the most prevalent threat to silkworms. Hence, there is a need for antiviral agents in sericulture. The PI3K-Akt pathway is essential for the efficient replication of the baculovirus. In an attempt to screen antiviral drugs against BmNPV, we summarized the commercial compounds targeting PI3K-Akt and selected the following seven oral drugs for further analyses: afuresertib, AZD8835, AMG319, HS173, AS605240, GDC0941, and BEZ235. Cell viability assay revealed that the cytotoxicity of these drugs at 10 &#181;M concentration was not strong. Viral fluorescence observation and qPCR analysis showed that these candidate drugs significantly inhibited BmNPV in BmE cells. Only AMG319 and AZD8835 inhibited viral proliferation in silkworm larvae. The mortality of AZD8835-treated silkworms was lower than that of the control silkworms. Western blotting showed that AMG319 and AZD8835 decreased p-Akt expression after BmNPV infection. These results suggest that AZD8835 has application potential in sericulture

    Nitrogen Removal Characteristics of Pseudomonas putida Y-9 Capable of Heterotrophic Nitrification and Aerobic Denitrification at Low Temperature

    No full text
    The cold-adapted bacterium Pseudomonas putida Y-9 was investigated and exhibited excellent capability for nitrogen removal at 15°C. The strain capable of heterotrophic nitrification and aerobic denitrification could efficiently remove ammonium, nitrate, and nitrite at an average removal rate of 2.85 mg, 1.60 mg, and 1.83 mg NL−1 h−1, respectively. Strain Y-9 performed nitrification in preference to denitrification when ammonium and nitrate or ammonium and nitrite coexisted in the solution. Meantime, the presence of nitrate had no effect on the ammonium removal rate of strain Y-9, and yet the presence of high concentration of nitrite would inhibit the cell growth and decrease the nitrification rate. The experimental results indicate that P. putida Y-9 has potential application for the treatment of wastewater containing high concentrations of ammonium along with its oxidation products at low temperature

    Wnt3a‐Loaded Extracellular Vesicles Promote Alveolar Epithelial Regeneration after Lung Injury

    No full text
    Abstract Compromised regeneration resulting from the deactivation of Wnt/β‐catenin signaling contributes to the progression of chronic obstructive pulmonary disease (COPD) with limited therapeutic options. Extracellular cytokine‐induced Wnt‐based signaling provides an alternative option for COPD treatment. However, the hydrophobic nature of Wnt proteins limits their purification and use. This study devises a strategy to deliver the membrane‐bound wingless‐type MMTV integration site family, member 3A (Wnt3a) over a long distance by anchoring it to the surface of extracellular vesicles (EVs). The newly engineered Wnt3aWG EVs are generated by co‐expressing Wnt3a with two genes encoding the membrane protein, WLS, and an engineered glypican, GPC6ΔGPI‐C1C2. The bioactivity of Wnt3aWG EVs is validated using a TOPFlash assay and a mesoderm differentiation model of human pluripotent stem cells. Wnt3aWG EVs activate Wnt signaling and promote cell growth following human alveolar epithelial cell injury. In an elastase‐induced emphysema model, impaired pulmonary function and enlarged airspace are greatly restored by the intravenous delivery of Wnt3aWG EVs. Single‐cell RNA sequencing–based analyses further highlight that Wnt3aWG EV‐activated regenerative programs are responsible for its beneficial effects. These findings suggest that EV‐based Wnt3a delivery represents a novel therapeutic strategy for lung repair and regeneration after injury

    Characteristics of Heterotrophic Nitrifying and Aerobic Denitrifying Arthrobacter nicotianae D51 Strain in the Presence of Copper

    No full text
    A heterotrophic nitrification and aerobic denitrification bacterium, strain D51, was identified as Arthrobacter nicotianae based on morphological, phospholipid fatty acids (PLFAs), and 16S rRNA gene sequence analyses. Further tests demonstrated that strain D51 had the capability to use nitrite, nitrate, or ammonium as the sole nitrogen source in the presence of Cu2+. The maximum removal efficiencies of nitrite, nitrate and ammonium were 68.97%, 78.32%, and 98.70%, respectively. Additionally, the maximum growth rate and denitrification capacity of this strain occurred in the presence of 0.05 mg L -1 of Cu2+.However, the growth and aerobic denitrification capacity were intensively inhibited by Cu2+ at 0.1 mg L -1. Moreover, gas chromatography indicated that a portion of the nitrogen was transformed into N2O when the nitrite, nitrate, and ammonium were separately used as the sole nitrogen source. This is the first study of the nitrification and denitrification ability of Arthrobacter nicotianae under aerobic conditions, and the first experiment to investigate the impact of Cu2+ concentration on the growth and denitrification ability of this bacteria. The results presented herein extend the known varieties of heterotrophic nitrifying-aerobic denitrifying bacteria and provide useful information regarding the specific bacteria for nitrogen bioremediation of industrial wastewater containing Cu2+

    Expression, purification, and characterization of a novel acid phosphatase that displays protein tyrosine phosphatases activity from <i>Metarhizium anisopliae</i> strain CQMa102

    No full text
    <p>The protein tyrosine phosphatase (PTPase) plays an important role in insect immune system. Our group has purified a type of acid phosphatase that could specifically dephosphorylate trans-Golgi p230 <i>in vitro</i>. In order to study this phosphatase further, we have identified and cloned the phosphatase gene from a locust specific <i>Metarhizium anisopliae</i> Strain CQMa102. The CQMa102 phosphatase was expressed in <i>Pichia pastoris</i> to verify its protease activity. The molecular weight (<i>M</i><sub><i>W</i></sub>) and the isoelectric point (<i>pI</i>) of the phosphatase were about 85 kDa and 6.15, respectively. Substrate specificity evaluation showed that the purified enzyme exhibited high activity on <i>O</i>-phospho-L-tyrosine. At its optimal pH of 6.5 and optimum temperature of 70 °C, the protein showed the highest activity respectively. It can be activated by Ca<sup>2+</sup>, Mg<sup>2+</sup>, Mn<sup>2+</sup>, Ba<sup>2+</sup>, Co<sup>2+</sup> and phosphate analogs, but inhibited by Zn<sup>2+</sup>, Cu<sup>2+</sup>, fluoride, dithiothreitol, β-mercaptoethanol and N-ethylmaleimide.</p> <p>The expression, purification and characterization of a novel acid phosphatase that displays protein tyrosine phosphatases activity.</p

    Infrared spectra peak fitting results before and after acidification.

    No full text
    (a) Absorption peaks of aromatic structures before and after acidification. (b) Absorption peaks of oxygen-containing functional group structures before and after acidification. (c) Absorption peaks of aliphatic hydrocarbon structures before and after acidification. (d) Absorption peak fitting of hydroxyl structures before and after acidification.</p

    An Optimized Human Erythroblast Differentiation System Reveals Cholesterol‐Dependency of Robust Production of Cultured Red Blood Cells Ex Vivo

    No full text
    Abstract The generation of cultured red blood cells (cRBCs) ex vivo represents a potentially unlimited source for RBC transfusion and other cell therapies. Human cRBCs can be generated from the terminal differentiation of proliferating erythroblasts derived from hematopoietic stem/progenitor cells or erythroid precursors in peripheral blood mononuclear cells. Efficient differentiation and maturation into cRBCs highly depend on replenishing human plasma, which exhibits variable potency across donors or batches and complicates the consistent cRBC production required for clinical translation. Hence, the role of human plasma in erythroblast terminal maturation is investigated and uncovered that 1) a newly developed cell culture basal medium mimicking the metabolic profile of human plasma enhances cell growth and increases cRBC yield upon erythroblast terminal differentiation and 2) LDL‐carried cholesterol, as a substitute for human plasma, is sufficient to support erythroid survival and terminal differentiation ex vivo. Consequently, a chemically‐defined optimized medium (COM) is developed, enabling robust generation of cRBCs from erythroblasts of multiple origins, with improved enucleation efficiency and higher reticulocyte yield, without the need for supplementing human plasma or serum. In addition, the results reveal the crucial role of lipid metabolism during human terminal erythropoiesis
    corecore