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ABSTRACT
BackgroundChanges in log urinary albumin-to-creatinine ratio (UACR) and GFR slope are individually used
as surrogate end points in clinical trials of CKD progression. Whether combining these surrogate end
points might strengthen inferences about clinical benefit is unknown.

Methods Using Bayesian meta-regressions across 41 randomized trials of CKD progression, we charac-
terized the combined relationship between the treatment effects on the clinical end point (sustained
doubling of serum creatinine, GFR ,15 ml/min per 1.73 m2, or kidney failure) and treatment effects on
UACR change and chronic GFR slope after 3 months. We applied the results to the design of Phase 2 trials
on the basis of UACR change and chronic GFR slope in combination.

Results Treatment effects on the clinical endpointwere strongly associatedwith the combination of treatment
effects on UACR change and chronic slope. The posterior median meta-regression coefficients for treatment
effects were20.41 (95%Bayesian Credible Interval,20.64 to20.17) per 1ml/min per 1.73m2 per year for the
treatment effect on GFR slope and 20.06 (95% Bayesian Credible Interval, 20.90 to 0.77) for the treatment
effect on UACR change. The predicted probability of clinical benefit when considering both surrogates was
determined primarily by estimated treatment effects on UACR when sample size was small (approximately 60
patients per treatment arm) and follow-up brief (approximately 1 year), with the importance of GFR slope
increasing for larger sample sizes and longer follow-up.

Conclusions In Phase 2 trials of CKD with sample sizes of 100–200 patients per arm and follow-up between
1 and 2 years, combining information from treatment effects on UACR change andGFR slope improved the
prediction of treatment effects on clinical end points.
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INTRODUCTION

Developing new therapies for patients with CKD is challenging
since established clinical end points, doubling of serum cre-
atinine or kidney failure with replacement therapy, can take a
long time to manifest in many patients. Accordingly, large
clinical trials recruiting patients with advanced stage or rapidly
progressive CKD are required to accrue sufficient end points to
properly establish drug efficacy. Valid surrogate end points can
help to facilitate clinical trial conduct and can also be used to
assess the efficacy of new therapies in earlier stages of CKD.

Changes in urinary albumin-to-creatinine ratio (UACR)
and GFR slope are commonly used as end points in Phase 2
clinical trials of CKD progression. Previous trial-level analyses
have supported the validity of these end points by demon-
strating that treatment effects on UACR or GFR slope are
associated with treatment effects on the established clinical
end point.1–3 Treatment effects on GFR slope are more pre-
dictive of treatment effects on the clinical end point than
treatment effects on UACR. This greater predictive accuracy
for GFR slope must be weighed against the potential com-
plexities of using GFR slope, particularly the common re-
quirement for longer follow-up time for many trial settings,
and the frequently encountered initial effect of the interven-
tion on GFR (i.e., the acute effect) which may differ from the
intervention’s longer term effect.

The contrasting strengths and limitations of change in
UACR and GFR-based surrogate end points raise the possi-
bility to develop a strategy that allows for incorporation of
both surrogate end points to strengthen inferences concerning
clinical benefit. We here describe a two-part approach for the
design and analysis of phase II clinical trials on the basis of the
combined use of change in UACR and GFR slope. We first
develop a multivariate meta-regression model that relates treat-
ment effects on early change in UACR, GFR slope, and the
clinical end point to each other. Subsequently, we apply this
multivariate meta-regression to the design and analysis of Phase
2 clinical trials of 1–2-year duration to assess the implications
for using the surrogates jointly in decision making to advance
to a Phase 3 trial. These results can be used as impetus for the
design and evaluation of future Phase 2 clinical trials.

METHODS

Systematic Review and Datasets
As previously described, randomized controlled trials
(RCTs) of CKD progression were identified using a system-
atic search, and individual patient data from the identified
clinical trials were obtained and analyzed at Tufts Medical
Center or at the local study sites or shared servers using the
same code with the results integrated into the joint analyses
across all studies.1 As we have performed previously for
RCTs that evaluated more than one intervention (e.g., fac-
torial or 3-arm RCTs), we included a separate randomized

treatment comparisons for each independent treatment
versus control comparison reported (referred to as studies
throughout). We pooled RCTs with fewer than 100 partic-
ipants that evaluated the same disease and intervention. A
priori, we excluded three studies with interventions in
which change in albuminuria was not believed to have
biologic plausibility as a surrogate end point (nurse co-
ordinated management4,5 and allopurinol6) and studies
with UACR data only after 6-month randomization.7–9

These exclusions resulted in a dataset with 41 studies.
The Tufts Medical Center Institutional Review Board ap-
proved this study.

Surrogate and Clinical End Points
The methods used to measure albuminuria varied among
studies, with most studies measuring UACR or urine protein
excretion rate. Because guidelines recommend the use of
UACR, we converted all urine protein excretion rate measure-
ments to UACR as described earlier.1 GFR was estimated using
the Chronic Kidney Disease Epidemiology Collaboration 2009
serum creatinine equation.10 Creatinine was standardized to
isotope dilution mass spectroscopy traceable reference meth-
ods using direct comparison or was reduced by 5% as described
previously.11 The clinical end point was defined as a composite
of a sustained doubling of serum creatinine, GFR ,15 ml/min
per 1.73 m2, or kidney failure with replacement therapy.

Statistical Analyses
Our primary analytic objective was to implement a methodol-
ogy for combining information from treatment effects on
UACR and GFR slope to predict treatment effects on clinical
end points by modeling the associations between treatment
effects onUACR, chronicGFR slope, and clinical end points.We
used a Bayesian approach to enable us to simplify computations
and to provide probabilities of benefit on the clinical end point.

We performed six steps starting with analyses of the relation-
ship between the three end points—UACR, GFR slope, and the
clinical end point—in previously conducted RCTs and ending
with the design and interpretation of results of a newly conducted
hypotheticalPhase2clinical trial.ThisMethods sectionprovidesa

Significance Statement

Changes in albuminuria and GFR slope are individually used as
surrogate end points in clinical trials of CKD progression, and
studies have demonstrated that each is associated with treatment
effects on clinical end points. In this study, the authors sought to
develop a conceptual framework that combines both surrogate end
points to better predict treatment effects on clinical end points in
Phase 2 trials. The results demonstrate that information from the
combined treatment effects on albuminuria and GFR slope im-
proves the prediction of treatment effects on the clinical end point
for Phase 2 trials with sample sizes between 100 and 200 patients
and duration of follow-up ranging from 1 to 2 years. These findings
may help inform design of clinical trials for interventions aimed at
slowing CKD progression.
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conceptual overview of each of the six steps. A complete analytic
presentation of the six steps is provided in the statistical supple-
ment. A schematic overview is presented in Figure 1.

Step 1: Conduct meta-regressions of previous trials. We per-
formed two trial-level meta-regressions on the basis of a two-
stage analysis to characterize the relationships among the
treatment effects on the three end points.

In the first stage of Step 1, treatment effects on UACR were
estimated by applying separate analyses of covariance models
for each study to relate the change in the log-transformed
UACR from baseline to 6 months to the randomized treatment
assignment while controlling for the baseline log UACR. The
treatment effects on UACR were expressed as ratios of the 6-
month geometric mean UACR levels between the active treat-
ment and control groups with adjustment for baseline log
UACR. The treatment effects on GFR slope were estimated
using a shared parameter mixed-effects model described
previously.2,12 Because interventions designed to slow pro-
gression of CKD often produce acute GFR changes that differ
from their long-term effects, our mixed model estimated
treatment effects on both the chronic GFR slope, defined as
the mean rate of change in GFR starting 3 months after
randomization, and the total GFR slope, defined as a time-
weighted average of the mean GFR slopes during the first three
months and over the chronic phase. For this article, we focused
on the chronic slope, with treatment effects expressed as
differences in the mean GFR slopes between the treatment
versus control groups, in units of ml/min per 1.73 m2 per yr.

The treatment effects on the clinical end point were estimated
by performing separate Cox proportional hazards regression
to estimate log hazard ratios (HRs) for the treatment in each
RCT. In addition to the estimated treatment effects, the first
stage of Step 1 provided the associated SEMs and robust
sandwich estimates of the correlations between the estimated
effects for each of the three end points.

In the second stage of Step 1, presented in the top left
portion of Figure 1, we fit a pair of Bayesian mixed-effects
meta-regressions to the results of the first stage with study as
the unit of analysis to relate (1) the treatment effects on GFR
slope to the treatment effects on UACR and (2) the treatment
effects on the clinical end point jointly to the treatment effects
on UACR and on GFR slope. These meta-regressions used
similar methods to those described in previous publications,
and details are described in the statistical supplement.1,2 Taken
together, the two meta-regressions describe the relationships
between the “true” treatment effects on the clinical end point,
GFR slope, and UACR across the previously conducted RCTs.
The meta-regression analyses account for varying SDs of the
random errors in the estimated effects on the three end points
in each RCT and for the correlations of these random errors
with each other. As a result, larger trials generally had more
influence on the results of our analyses than smaller trials.

Step 2: Construct the prior distribution for the treatment
effects in new Phase 2 trials. Step 2 uses the results of Step 1 to
construct the joint prior distribution which can be used to
estimate the treatment effects on the three end points in new

Figure 1. Study design. PPVtrial, trial-level positive predictive value; RCT, randomized controlled trial; UACR, urinary albumin-to-
creatinine ratio. Figure 1 can be viewed in color online at www.jasn.org.
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Phase 2 trials. The joint prior distribution is a product of three
terms (Step 2 in Figure 1). The first term defines a diffuse,
noninformative prior for the treatment effect on UACR which
assures that inferences made in the new trial are not influenced
by the sizes or directions of the treatment effects on UACR in
previous trials. The second term is the conditional distribution
for the treatment effect on GFR slope given the treatment
effect on UACR. The third term is the conditional distribution
of the treatment effect on the clinical end point given the
treatment effects on both GFR slope and UACR. The condi-
tional distributions in the second and third terms are provided
directly by the two meta-regressions on the basis of previously
conducted RCTs from Step 1. Because of this, the application
of the conditional distributions to new trials requires the
assumption that the relationships among the treatment effects
on the surrogate and clinical end points that were observed in
the previous RCTs apply also for the relationship between the
treatment effects on the surrogate and clinical end points in
the new Phase 2 trial. However, no assumptions are required
regarding the relationship of treatment effect on UACR in the
new trial compared with the previous trials.

Step 3: Estimate SEMs for treatment effects on UACR and GFR
slope for candidate designs for the new Phase 2 trial. This step
corresponds closely to conventional power calculations that are
routinely used for the design of Phase 2 trials that use either
UACR or GFR slope as their primary end point. The SEs depend
on assumptions about the variability of changes in log UACR
and in GFR over time as well as on the characteristics of the
Phase 2 trial design. The key design characteristics that influence
the SEs are the sample size, the duration of follow-up, and the
frequency and spacing of GFRmeasurements during the follow-
up period of the Phase 2 trial. Reflecting previous CKD
trials,1,2,13 we computed the SEMs corresponding to five po-
tential Phase 2 designs of different sizes and durations as well as
one Phase 3 design assuming that the residual root mean square
error for the 6-month log UACR after controlling for baseline
log UACR is 0.725, a SD for the “true” chronic GFR slopes of 4
ml/min per 1.73 m2, and a residual SD for the individual GFR
measurements of 5.16 ml/min per 1.73 m2. The five designs are
as follows: Design A, 60 patients per treatment group with
quarterly GFR measurements for 1.25 years; Design B, 120
patients per treatment group with quarterly GFRmeasurements
for 1.25 years; Design C, 120 patients per treatment group with
monthly GFR measurements for 1.25 years; Design D, 120
patients per treatment group with quarterly GFRmeasurements
for 2 years; and Design E, 240 patients per treatment group with
quarterly GFR measurements for 2 years. In each design, we
assume that 2 GFR measurements are obtained at baseline.

Step 4: Compare Phase 2 designs on the basis of posterior
probabilities of clinical benefit (denoted trial-level positive pre-
dictive value [PPVtrial]) for hypothetical observed treatment
effects on UACR and GFR slope. In conventional power calcu-
lations, the SEs from Step 3 are used to provide the minimum
detectable treatment effects of the candidate designs on UACR
and GFR slope themselves. This provides the smallest

hypothesized treatment effects which are required to provide
the desired power (usually 80% or 90%) to demonstrate that
the true effects on the UACR or GFR slope end points differ by
any amount from the null hypothesis of 0, including very small
differences which are too small to provide confidence in
clinical benefit. When we are considering UACR and GFR
slope as surrogate end points to determine whether to proceed
to a Phase 3 trial, it is also of interest to assess whether the
treatment effects on UACR and GFR slope are not only non-
zero but also sufficiently large to provide confidence that the
treatment will ultimately provide a clinical benefit.

Step 4 applies the SEMs from Step 3 in conjunction with the
prior distribution from Step 2 to compute the Bayesian pos-
terior probability of a benefit on the clinical end point across a
range of hypothetical values for the observed treatment effects
on UACR and GFR slope in the Phase 2 trial. We consider three
thresholds for clinical benefit: A HR ,1 for the clinical end
point, in which case any benefit is considered important, no
matter how small, and HRs ,0.9 and ,0.8, in which case we
only consider treatments that reduce the hazard by at least 10%
or 20%, respectively, to be clinically useful.

The posterior probability of benefit on the true clinical end
point is analogous to the positive predictive value in diagnostic
testing. In this analogy, a true treatment benefit in the newly
conducted trial substitutes for the presence of true disease in
the patient, the observed treatment effects on the surrogate
end points substitute for the diagnostic test results, and the
prior distribution which relates the treatment effects on the
clinical and surrogate end points from Step 2 substitutes for
the disease prevalence. Accordingly, we refer to the posterior
probability of benefit on the clinical end point as the PPVtrial,
denoted by PPVtrial, to stress the reference to an entire trial
rather than an individual patient. Figure 2 compares PPVtrial

between the five designs described in Step 3.
Step 5: Compare Phase 2 designs for the sampling distribution

of the estimated values for PPVtrial. From the standpoint of
study design, a limitation of Step 4 is that the values of PPVtrial

are computed for estimated treatment effects on UACR and
GFR slope which themselves can contain substantial random
sampling error, particularly for smaller Phase 2 trials. Step 5
addresses this limitation by providing two quantities which are
derived from the sampling distribution of the estimated values
for PPVtrial but which are computed at hypothesized true
values for the true treatment effects on UACR and GFR slope.

First, given a specific combination of hypothesized true
treatment effects on UACR and GFR slope, we provide the
average estimated value of PPVtrial after accounting for the
random variation in the estimated treatment effects around
the hypothesized true effects. We perform this calculation across
the range of combinations of hypothesized true treatment
effects on UACR and GFR slope. A good Phase 2 design
from the surrogate end point perspective will have sufficient
sample size, duration, and frequency of GFR measurements to
demonstrate both a low average estimated PPVtrial under the
null hypothesis of no effect on both UACR and GFR slope and a

958 JASN JASN 34: 955–968, 2023
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Figure 2. PPVtrial on the basis observed treatment effects on UACR and slope to infer clinical benefit defined as HR<1. Shown are
the PPVtrial for inferring clinical benefit defined as a HR for the clinical end point which is ,1 based on combinations of observed
treatment effects on slope and ACR in the Phase 2 trial. The unshaded region designates values for PPVtrial ,0.80. The light shaded
region indicates values of PPVtrial between 0.80 and 0.90. The dark shaded region indicates PPVtrial $0.90. If PPVtrial is estimated based
on the treatment effect on UACR alone, under design 1, the average positive predictive values are 0.54, 0.61, 0.67, 0.73, 0.79, 0.86,
0.90, 0.94, and 0.96 for true GMRs ranging from 1.00 to 0.60, respectively. Under designs 2–4, the corresponding values are 0.53, 0.61,
0.69, 0.77, 0.84, 0.88, 0.92, 0.95, and 0.97, respectively. Under design 5, the corresponding values for PPVtrial are 0.53, 0.62, 0.7, 0.78,
0.85, 0.90, 0.94, 0.96, and 0.98. GMR, geometric mean ratio; HR, hazard ratio; PPVtrial, trial-level positive predictive value; UACR, urine
albumin-to-creatinine ratio. Figure 2 can be viewed in color online at www.jasn.org.
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Figure 3. Average estimated PPVtrial to infer clinical benefit defined as HR <1. Shown are the average estimated values of PPVtrial

for inferring clinical benefit defined as a HR for the clinical end point which is ,1 based on combinations of hypothesized true
treatment effects on slope and UACR. The estimated values for PPVtrial are averaged over the sampling distributions for the estimated
treatment effects on slope and ACR given the true hypothesized treatment effects on these end points. The unshaded region des-
ignates average estimated PPVtrial ,0.80. The light shaded region indicates average estimated PPVtrial between 0.80 and 0.90. The
dark shaded region indicates average estimated PPVtrial $0.90. If the average estimated PPVtrial is computed based on the treatment
effect on UACR alone, under design 1, the average estimated PPVtrial values are 0.55, 0.61, 0.68, 0.76, 0.83, 0.89, 0.92, 0.96, and 0.97
for observed GMRs ranging from 1.00 to 0.60, respectively. Under designs 2–4, the corresponding values are 0.53, 0.62, 0.70, 0.78,
0.85, 0.90, 0.94, 0.96, and 0.98, respectively. Under Design 5, the corresponding average estimated PPVtrial values are 0.54, 0.62, 0.70,
0.79, 0.86, 0.91, 0.95, 0.97, and 0.98. GMR, geometric mean ratio; HR, hazard ratio; PPVtrial, trial-level positive predictive value; UACR,
urine albumin-to-creatinine ratio. Figure 3 can be viewed in color online at www.jasn.org.
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high average estimated PPVtrial under plausible research hy-
potheses for treatment benefit on the two surrogates. Figure 3
compares the average estimated PPVtrial across the five designs.

Second, given a specific combination of hypothesized true
effects onUACR andGFR slope, we compute the probability that
the estimated PPVtrial exceeds a target level, such as 0.85, which is
deemed sufficient to proceed to a Phase 3 trial. We can view the
probability that the estimated PPVtrial exceeds the target thresh-
old as an analog of Type 1 error for the surrogate end point
setting under the null hypothesis of no effects on either surrogate
and as an analog of statistical power for the surrogate end point
setting when favorable treatment effects are hypothesized for the
two surrogates. Figure 4 illustrates the probabilities that the
estimated PPVtrial exceeds 0.85 for the five designs.

Step 6: Use Bayesian computations to estimate the posterior
probability of clinical benefit given the observed treatment effects
on the two surrogate end points in the Phase 2 trial. Whereas Steps
4 and 5 are implemented during the design phase of the Phase 2
trial, before enrollment of patients, Step 6 is implemented after
the completion of the Phase 2 trial to interpret the actual results
from the trial. Step 6 uses the same Bayesian calculations as
Steps 4 and 5, but in this case, the posterior probability of
clinical benefit is computed from the treatment effects which
are actually observed at the completion of the Phase 2 trial.

RESULTS

Study Characteristics
The 41 RCTs included in this study enrolled 29,979 partici-
pants that had at least one UACR measurement within
6 months after randomization. Aggregate characteristics of
included studies stratified by disease are summarized in
Supplemental Table 1. The median baseline UACR was
272 mg/g (2.5th to 97.5th Percentile [P]: 30–1134 mg/g),
and the mean baseline GFR was 58.2 ml/min per 1.73 m2

(SD: 25.0). There were ten studies of participants with diabetes
(6 of which had participants with CKD), nine studies of
participants in whom the cause of kidney disease was glomer-
ular, six in whom it was hypertension or polycystic kidney
disease, and 16 where the cause could not be specified.

Meta-Regression Relating Treatment Effects on
Albuminuria and GFR Slope to Treatment Effects on the
Established Kidney End Point
Across the 41 RCTs, compared with the control treatment arm,
under the Bayesian joint model, the active treatment resulted
in a 24% decrease in hazard of the clinical end point % (average
HR 0.76, 95% Bayesian Credible Interval [BCI] 0.67–0.85).
Compared with the control treatment arm, the active treatment
reduced the mean rate of the chronic GFR decline by 0.63, 95%
BCI (0.38, 0.89) ml/min per 1.73 m2 per yr, and reduced the
geometric mean UACR by 22%, 95% BCI (17%, 26%).

Table 1 presents the means and SDs of the treatment effects
on each of the three end points and the parameters for the two

meta-regressions that define the joint model relating the
treatment effects on the clinical end point, GFR slope, and
change in UACR. In the meta-regression establishing the
relationship between combined treatment effects on GFR
slope and UACR with the clinical end point, the posterior
median intercept was 20.03 (95% BCI 20.21 to 0.14), in-
dicating that the model predicts a neutral treatment effect
for the clinical end point when the treatment effects on the
two surrogates are equal to 0 (Table 1). The median meta-
regression coefficients were20.41 (95% BCI20.64 to20.17)
per 1 ml/min per 1.73 m2 per yr for the treatment effect on the
chronic slope and 20.06 (95% BCI 20.90 to 0.77) for the
treatment effect on log UACR, indicating that the chronic
GFR slope contributed to a larger extent than log UACR to the
prediction of the treatment effect on the clinical end point
(Table 1). The median R2 was 0.93 for joint meta-regression of
treatment effects on the clinical end point versus treatment
effects on the chronic slope and log UACR. The joint model
also established the relationship between “true” treatment
effects on UACR and GFR slope, which showed a median
intercept of20.04 (95% BCI20.56 to 0.44) and a coefficient
of 22.74 (95% BCI 24.71 to 20.96) ml/min/1.73 m2 per yr.
The relationship between treatment effects on the clinical end
point and GFR slope for various treatment effects on UACR is
presented in Supplemental Figure 1.

PPVtrial on the Basis of Observed Treatment Effects on
UACR and Slope
We subsequently examine the implications of the joint model
that incorporated treatment effects on UACR and GFR slope to
inform the design of Phase 2 clinical trials. The five panels of
Figure 2 display PPVtrial for the five designs given hypothetical
combinations of treatment effects on UACR and GFR slope
which are observed after the Phase 2 trial is completed. As
expected, for each of the five designs, PPVtrial increases,
indicating a higher likelihood of a favorable effect on the
clinical end point, with larger treatment effects on GFR slope
and change in UACR. The values of PPVtrial are driven almost
entirely by UACR when the sample size is small and the follow-
up is short, but the importance of GFR slope increases when
the sample size and follow-up times increase. For comparison,
the figure legend provides the values of PPVtrial if the model is
applied to UACR only, ignoring GFR slope. In an example,
Phase 3 design with 600 patients per treatment group and a
2-year follow-up, the PPVtrial is determined almost exclusively
by GFR slope (Supplemental Figure 4).

As expected, larger observed effects on the two surrogates are
required to provide high values for PPVtrial when clinical benefit
was defined asHR,0.8 or,0.9 (Supplemental Figures 2 and 3).

Average Estimated PPVtrial on the Basis of
Hypothesized True Treatment Effects on UACR and
GFR Slope
Figure 3 presents the projected average estimated PPVtrial for
the five Phase 2 designs for the same combinations of
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Figure 4. Probability of demonstrating clinical benefit given hypothesized treatment effects on UACR and GFR slope. Clinical
benefit defined by a PPVtrial $0.85 for inferring a HR ,1 for the clinical end point. Shown are the probabilities under alternative
Phase 2 designs for obtaining an estimated trial-level positive predictive value (PPVtrial) .0.85 for demonstrating clinical benefit
defined as a HR for the clinical end point which is ,1 based on combinations of hypothesized true treatment effects on slope and
UACR. A total of five Phase 2 designs are considered, with sample size ranging from 60 to 240 patients per group, follow-up time
ranging from 1.25 to 2 years, and GFR measurements obtained quarterly or monthly. The probability of demonstrating clinical
benefit can be viewed as Type 1 error when the hypothesized treatment effects on both slope and UACR are null (given by the cell
in the upper left corner of each table) and as an analog of statistical power relevant to surrogate end points for non-null hypotheses
on one or both surrogate end points. The unshaded region designates probabilities of ,0.80 for demonstrating a PPVtrial .0.85.
The light shaded region indicates probabilities between 0.80 and 0.90 for demonstrating a PPVtrial .0.85. The dark shaded region
indicates probabilities $0.90 for demonstrating a PPVtrial .0.85. For comparison, under conventional power calculations for testing
the null hypotheses that treatment effects on UACR or GFR slope are identical to 0, the minimum detectable treatment effects for
UACR are 35.4% under Design A, 26.3% under Designs B-D, and 19.4% under Design E. The minimum detectable treatment effects
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treatment effects on UACR and GFR slope that were presented
in Figure 2, but in this case, the effects represent hypothesized
true treatment effects rather than estimated effects. Similar to
what was found with the use of observed treatment effects, the
average estimated PPVtrial is driven almost entirely by UACR
when the sample size is small and the follow-up is short, with
the importance of GFR slope increasing when the sample size
and follow-up times increase. In most cases, the average
estimated PPVtrial on the basis of a particular combination
of hypothesized true treatment effects in Figure 3 is slightly
smaller than the PPVtrial at these corresponding observed
treatment effects on slope and UACR in Figure 2. This re-
duction reflects the added uncertainty resulting from the
variability of the estimated treatment effects around the

true treatment effects in the Phase 2 trial. Supplemental
Figures 5 and 6 show the average estimated PPVtrial for
hypothesized true treatment effects on UACR and GFR slope
when clinical benefit is defined as a HR of 0.9 or 0.8,
respectively.

Probability of Inferring Clinical Benefit on the Basis of
Hypothesized True Treatment Effects on UACR and
Slope
Figure 4 presents the probabilities that the estimated value for
PPVtrial exceeds 0.85 for the same set of treatment effects on
UACR and slope presented in Figures 2 and 3. These prob-
abilities can be interpreted as an analog of statistical power for
demonstrating clinical benefit on the basis of surrogate end

Figure 4. (Continued) for GFR slope are 4.73, 3.31, 2.57, 2.23, and 1.57 ml/min per 1.73 m2 per yr, respectively. As noted in the methods
section, the minimum detectable effects under conventional power calculations provide information about the smallest effects necessary
to demonstrate that effects on UACR or slope differ from 0 but do not indicate whether these nonzero effects are large enough to provide
evidence of clinical benefit. GMR, geometric mean ratio; HR, hazard ratio; PPVtrial, trial-level positive predictive value; UACR, urine al-
bumin-to-creatinine ratio. Figure 4 can be viewed in color online at www.jasn.org.

Table 1. Treatment effects and meta-regression parameters

Meta-
Regression Parameters

Mean SD 2.5th Percentile 25th Percentile 50th Percentile 75th Percentile 97.5th Percentile

Means and SDs of treatment effects on the three end points
Mean treatment effect on

clinical end point (log HR)
20.28 0.06 20.40 20.31 20.27 20.24 20.16

SD for treatment effects on
clinical end point (log HR)

0.28 0.07 0.16 0.23 0.27 0.32 0.42

Mean treatment effect on
chronic slope (ml/min per
1.73 m2 per yr)

0.63 0.13 0.38 0.54 0.63 0.72 0.89

SD for treatment effects on
chronic slope (ml/min per
1.73 m2 per yr)

0.65 0.13 0.43 0.56 0.64 0.73 0.93

Mean treatment effect on
log UACR

20.25 0.03 20.30 20.26 20.25 20.23 20.19

SD for treatment effects on
log UACR

0.15 0.03 0.10 0.13 0.15 0.17 0.21

Meta-regression relating treatment effects on CE jointly to treatment effects on chronic slope and UACR
Intercept 20.03 0.09 20.21 20.09 20.03 0.03 0.14
Coefficient of treatment

effect on chronic slope
20.41 0.12 20.64 20.49 20.41 20.34 20.17

Coefficient of treatment
effect on log UACR

20.06 0.42 20.90 20.33 20.06 0.21 0.77

RMSE 0.08 0.04 0.02 0.04 0.07 0.11 0.18
R2 0.88 0.13 0.54 0.83 0.93 0.98 1.00

Meta-regression relating
treatment effects on chronic
slope to treatment effects
on UACR
Intercept 20.04 0.25 20.56 20.20 20.04 0.12 0.44
Coefficient of treatment

effects on log UACR
22.76 0.95 24.71 23.36 22.74 22.13 20.96

R2 0.42 0.18 0.06 0.29 0.43 0.56 0.75

Shown are themean and SDs as well as the 2.5th, 25th, 50th, 75th, and 97.5th percentiles of the posterior distributions of the treatment effects and themeta-regression
parameters that define the jointmodel. The top panel summarizes the posterior distributions of themeans and SDs of the treatment effects on the three endpoints. The
middle panel summarizes the meta-regression coefficients for the joint meta-regression relating the treatment effects on the clinical end point to the treatment effects
on both the chronic slope and UACR. The bottom panel summarizes the meta-regression coefficients relating the treatment effects on the chronic slope to the
treatment effects on log UACR. HR, hazard ratio; UACR, urine albumin-to-creatinine ratio; RMSE, root mean square error; R2, squared multiple correlation.
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points. Comparison of Figures 2 and 4 shows that the sizes of
the hypothesized true treatment effects required to assure an
80% probability of reaching a target PPVtrial of 0.85 are
considerably larger than the sizes of observed treatment effects
required to reach the same value for PPVtrial. This reflects the
sampling error in the estimated treatment effects; the true
treatment effects must be more favorable than the estimated
effects to assure a high probability that the estimated effects fall
into a range that provides high confidence of a benefit on the
clinical end point.

These calculations can also be used to compute the min-
imum sample size necessary to achieve a desired statistical
power for demonstrating that PPVtrial exceeds a target thresh-
old, which is calibrated, so that the threshold is exceeded by
PPVtrial with probability 0.05 under the joint null hypothesis of
no effect on either surrogate end point. For example, if a
moderate treatment effect of 22.5% is hypothesized for the
treatment effect on UACR, theminimum sample size per group
required for 80% power to achieve the designated PPVtrial

threshold in a 2-year trial with quarterly GFR assessments is
102 patients per group if the hypothesized treatment effect on
the chronic GFR slope is 0.8 ml/min per 1.73 m2 per yr and 470
patients per group if the hypothesized treatment effect on the
chronic GFR slope is 0.6 ml/min per 1.73 m2 per yr.

DISCUSSION

We have previously demonstrated that the treatment effects on
change in albuminuria and GFR slope, both commonly used
and accepted end points in Phase 2 trials of CKD progression,
are associated with the treatment effects on clinical end points.
In this study, we extend these findings and develop a strategy to
define the probability of benefit on the clinical end point by
incorporating information from both surrogates. We demon-
strated that combining information from both treatment
effects on albuminuria and GFR slope does improve the pre-
diction of treatment effects on the clinical end point for Phase
2 trials of moderate sample sizes or duration of follow-up
ranging between 1 and 2 years, whereas in smaller Phase 2
trials of short duration, the prediction of clinical benefit was
almost exclusively due to the treatment effects on albuminuria.
The contribution of GFR slope increases when the sample sizes
or duration of follow-up increases. These results may help
inform design of clinical trials for interventions aimed at
slowing CKD progression.

GFR slope has been proposed to be a better surrogate end
point than albuminuria because it is more directly related to
kidney failure and occurs in all patients with CKD regardless of
cause of kidney disease. Indeed, a patient must experience a
decline in GFR to develop kidney failure. Observational stud-
ies and clinical trials have demonstrated substantially stronger
associations between changes in GFR and a clinical end point
and between treatment effects on GFR slope and treatment
effects on the clinical end point, than similar comparisons with

albuminuria.2,14 However, compared with albuminuria, esti-
mating the effect of a treatment on GFR slope requires larger
studies of longer duration. Furthermore, acute effects, which
are frequently observed, complicate the utility of GFR slope.
These challenges may limit the use of GFR slope in Phase 2
studies. Conversely, albuminuria is only applicable for inter-
ventions whose mechanism of action goes through albumin-
uria and the strength of the relationship between early
treatment effects on albuminuria and clinical end points is
weaker than GFR slope. Thus, for interventions that work
through albuminuria and for study populations with some
minimal level of albuminuria, the complementary strengths
and limitations of both surrogates provide an opportunity to
combine both to improve the prediction of treatment effects
on clinical end points. This notion is supported by observa-
tional studies demonstrating that the combination of albu-
minuria change and GFR slope improves prediction of clinical
end points compared with each risk marker alone.15

The effect of an intervention on total GFR slope from
baseline to a time point late in this study reflects the combi-
nation of the immediate or acute effect and the effect during
the subsequent chronic phase. Acute effects are often believed
to be reversible after treatment cessation and not related to the
mechanism of action of the drug on CKD progression. In the
present analyses, we elected to model the treatment effect on
chronic GFR slope because the treatment effect on the chronic
slope reflects the loss of functioning nephrons and may be
subject to less confounding by potential reversible acute effects
on GFR. In addition, for studies of ,24-month duration,
acute effects would limit the ability to use the total slope.
Future studies can help to inform as to whether total GFR
slope, that incorporates acute and chronic effects, provides any
additional information beyond albuminuria change on pre-
diction of clinical benefit. It is possible that drugs that have an
acute effect on GFR but do not have beneficial effects on
albuminuria are less likely to lead to clinical benefit than drugs
with an acute effect and benefit on albuminuria.

The results of our study have implications for future Phase
2 and Phase 3 clinical trials of new interventions to slow CKD
progression. First, typical Phase 2 dose-finding studies for
interventions intended to slow progression of CKD generally
last 6 months and recruit 100 to 200 patients per treatment
arm.16,17 We demonstrated that change in albuminuria is a
preferred end point for studies of this duration and size and
could be used for dose selection and decision making to
proceed to a confirmatory trial for interventions that work
through albuminuria and populations with increased albu-
minuria. For some drug development programs evaluating
interventions with mechanisms of action not previously stud-
ied or in those where there is uncertainty concerning the extent
to which the drug’s mechanisms of action for slowing CKD
progression is reflected in an early change in albuminuria,
incorporating information from GFR slope will improve the
prediction of clinical benefit and inform decision making to
proceed to a confirmatory Phase 3 trial. As preliminary

964 JASN JASN 34: 955–968, 2023

META-ANALYSIS www.jasn.org

D
ow

nloaded from
 http://journals.lw

w
.com

/jasn by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsIH

o4X
M

i0hC
yw

C
X

1A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

1y0abggQ
Z

X
dtw

nfK
Z

B
Y

tw
s=

 on 11/05/2023



evidence that our proposed method can be used, these results
have been included in the design and analysis of at least two
Phase 2 clinical trials with drug classes not included in our
analysis (e.g., NCT04419467). The primary end point in these
trials was albuminuria assessed after 6 months. However, par-
ticipants were followed for 12 months to assess the effects on
GFR slope. The strategy described in this article is used to
combine effects on albuminuria and GFR slope to estimate the
probability of clinical benefit and to help inform a go/no-go
decision to proceed to a Phase 3 trial. The results of these studies
will provide more insight into the applicability of our approach
to novel interventions and populations and will likely support
implementation in future Phase 2 clinical trials.16

The results of this study may also have implications for trials
evaluating interventions to slow progression in rare kidney
diseases. In rare kidney diseases, albuminuria has been accepted
as a surrogate end point to grant accelerated approval by drug
regulation agencies followed by full approval if the intervention
slows GFR decline during prolonged treatment and is safe and
well-tolerated.18–21 At the time when albuminuria data have
been collected and dossiers are prepared for accelerated regu-
latory approval, GFR data are often available but insufficient to
determine drug efficacy because of the short follow-up duration.
The joint model we developed allows investigators to combine
albuminuria and GFR slope data to strengthen inferences about
potential beneficial drug effects on clinical end points taking
advantage of both surrogate end points. The joined information
from both surrogates can thus inform trialists and drug regu-
latory officers to improve their benefit-risk assessment.

We presented three metrics which may be used in the design
phase of a Phase 2 trial when the objective is to incorporate
information from both albuminuria and GFR slope to assess the
likelihood of clinical benefit. The first metric, denoted PPVtrial,
provides the posterior probability of benefit on the clinical end
point corresponding to combinations of hypothetical values for
the observed treatment effects on UACR and GFR slope. The
second metric, average estimated PPVtrial, provides similar in-
formation to PPVtrial but is the average of the sampling distri-
bution of the PPVtrial over the estimated treatment effects on
UACR and GFR slope. The third metric provides the probability
of obtaining a sufficiently large estimated PPVtrial for inferring a
benefit on the clinical end point to warrant proceeding to a
Phase 3 trial. All three metrics can be used by investigators to
compare and select between alternative Phase 2 designs. We
emphasize that the calculation of the probability of obtaining a
sufficiently large PPVtrial to proceed to a Phase 3 trial differs
fundamentally from conventional power calculations. A con-
ventional power calculationwith albuminuria (or GFR slope) as
the end point provides information as to how large a study
should be to infer a nonzero benefit on albuminuria (or GFR
slope) itself. The bar is considerably higher when we seek to
demonstrate a high probability of clinical benefit on the basis of
the surrogate end points, as we must demonstrate not just that
the effects of the treatment on the surrogates are nonzero but
also that they are sufficiently large to infer clinical benefit.

Strengths of this study include a large and diverse collection of
RCTs identified through a systematic literature search and a
rigorous evaluation using individual patient data. Because we
analyzed patient-level data, wewere able to characterize agreement
between treatment effects on albuminuria, GFR slope, and clinical
end points after adjusting for spurious correlations in sampling
error that resulted from inclusion of the sameGFRmeasurements
in the GFR slope and clinical end points. In addition, we applied a
uniform analysis of GFR slope across all RCTs by using a robust
method for analysis of GFR slope that accounted for informative
censoring and multiple potential sources of variability in GFR
measurements over time. The developed Bayesian meta-
regression model with diffuse prior distributions for albuminuria
allowed us to rigorously account for multiple sources of uncer-
tainty and to translate treatment effects on the surrogate end
points to probabilities of benefit on the clinical end point.

There are also several limitations. First, we used studies mostly
with 3 years of follow-up to estimate treatment effect onGFR slope
but then apply these estimates to treatment effects for shorter
studies expected in Phase 2 clinical trials whichmay have led to an
overestimation of the precision of treatment estimates on GFR
slope. However, in previous work, we demonstrated that chronic
slope estimated over 24 months provided similar results as that
estimated over the study duration.22 Second, our joint model
represents the treatment effect on GFR slope solely through the
effect of the treatment on the chronic slope, and the performance
of the chronic slope as a surrogate may be reduced in trials with
large acute effects. Subsequent work should extend the jointmodel
considered in this article to relate the treatment effect on the
clinical end point jointly to the treatment effects on UACR as well
as both the acute and chronic slopes. Third, we assume that the
relationships among the treatment effects on the surrogate and
clinical end points that were observed in the previous RCTs apply
also for the relationship between the treatment effects on the
surrogate and clinical end points in the new Phase 2 trial. This
assumption requires that past relationships among the end points
are applicable to future drugs with novel mechanisms of interac-
tion which may not always be true. Fourth, monthly GFR assess-
ments increase the precision of the treatment effect estimate on
GFR slope, and we showed that in settings where the drug slows
GFR decline, it increases PPVtrial compared with quarterly GFR
assessments. However, this advantage needs to be balanced with
operational and practical aspects as monthly GFR assessment is
cumbersome for trial participants and may decrease interest in
participation. Fifth, while our analyses account for the estimated
SEMs of the estimated treatment effects on the surrogate and
clinical end points within each trial, we do not account for
uncertainty in the estimates of the SEMs themselves.Our approach
is consistent with most published meta-analyses. Finally, we use a
linear model to combine GFR slope and albuminuria. Additional
work is needed to relax the assumptions in the trial-level analysis.

In conclusion, we developed a trial-level meta-regression
model relating a clinical end point to two surrogate end points
to guide the design of a Phase 2 clinical trials in the setting of
CKD. The model demonstrated that with sample sizes between
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100 and 200 patients per group or follow-up times ranging
between 1 and 2 years combining the information from treat-
ment effects on UACR change and GFR slope improved the
prediction of treatment effects on clinical end points.
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