
 

 

 University of Groningen

Acute Treatment Effects on GFR in Randomized Clinical Trials of Kidney Disease
Progression
CKD-EPI Clinical Trials; Neuen, Brendon L.; Tighiouart, Hocine; Heerspink, Hiddo J.L.;
Vonesh, Edward F.; Chaudhari, Juhi; Miao, Shiyuan; Chan, Tak Mao; Fervenza, Fernando C.;
Floege, Jurgen
Published in:
Journal of the American Society of Nephrology

DOI:
10.1681/ASN.2021070948

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
CKD-EPI Clinical Trials, Neuen, B. L., Tighiouart, H., Heerspink, H. J. L., Vonesh, E. F., Chaudhari, J.,
Miao, S., Chan, T. M., Fervenza, F. C., Floege, J., Goicoechea, M., Herrington, W. G., Imai, E., Jafar, T. H.,
Lewis, J. B., Li, P. K. T., Locatelli, F., Maes, B. D., Perrone, R. D., ... Inker, L. A. (2022). Acute Treatment
Effects on GFR in Randomized Clinical Trials of Kidney Disease Progression. Journal of the American
Society of Nephrology, 33(2), 291-303. https://doi.org/10.1681/ASN.2021070948

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://doi.org/10.1681/ASN.2021070948
https://research.rug.nl/en/publications/e5f9ae1c-cff1-46c3-881d-8180bd3aca04
https://doi.org/10.1681/ASN.2021070948


Acute Treatment Effects on GFR in Randomized
Clinical Trials of Kidney Disease Progression

Brendon L. Neuen ,1 Hocine Tighiouart,2,3 Hiddo J.L. Heerspink,4 Edward F. Vonesh,5

Juhi Chaudhari,6 Shiyuan Miao,6 Tak Mao Chan,7 Fernando C. Fervenza ,8 J€urgen Floege,9

Marian Goicoechea,10 William G. Herrington ,11 Enyu Imai,12 Tazeen H. Jafar,13,14

Julia B. Lewis,15 Philip Kam-Tao Li ,16 Francesco Locatelli,17 Bart D. Maes,18

Ronald D. Perrone ,6 Manuel Praga,19 Annalisa Perna,20 Francesco P. Schena,21

Christoph Wanner ,22 Jack F.M. Wetzels,23 Mark Woodward ,1,24 Di Xie,25

Tom Greene ,26 and Lesley A. Inker6 on behalf of CKD-EPI Clinical Trials*

Due to the number of contributing authors, the affiliations are listed at the end of this article.

ABSTRACT
Background Acute changes in GFR can occur after initiation of interventions targeting progression of
CKD. These acute changes complicate the interpretation of long-term treatment effects.

Methods To assess the magnitude and consistency of acute effects in randomized clinical trials and
explore factors that might affect them, we performed a meta-analysis of 53 randomized clinical trials for
CKD progression, enrolling 56,413 participants with at least one estimated GFRmeasurement by 6 months
after randomization. We defined acute treatment effects as the mean difference in GFR slope from
baseline to 3 months between randomized groups. We performed univariable and multivariable metare-
gression to assess the effect of intervention type, disease state, baseline GFR, and albuminuria on the
magnitude of acute effects.

Results The mean acute effect across all studies was 20.21 ml/min per 1.73 m2 (95% confidence interval,
20.63 to 0.22) over 3 months, with substantial heterogeneity across interventions (95% coverage interval
across studies, 22.50 to 12.08 ml/min per 1.73 m2). We observed negative average acute effects in renin
angiotensin system blockade, BP lowering, and sodium-glucose cotransporter 2 inhibitor trials, and posi-
tive acute effects in trials of immunosuppressive agents. Larger negative acute effects were observed in
trials with a higher mean baseline GFR.

Conclusion The magnitude and consistency of acute GFR effects vary across different interventions, and
are larger at higher baseline GFR. Understanding the nature and magnitude of acute effects can help
inform the optimal design of randomized clinical trials evaluating disease progression in CKD.

JASN 33: 291–303, 2022. doi: https://doi.org/10.1681/ASN.2021070948

A key challenge in the design and conduct of ran-
domized controlled trials (RCTs) of CKD is that
kidney failure typically develops over a long period
of time, thus studies seeking to detect effects on
this outcome require substantial follow-up time.
As a result, there has been substantial effort from
investigators, regulatory authorities, and sponsors
toward identifying robust alternative endpoints for
kidney failure, particularly for the early stages of
CKD and for early-phase trials.1–6

A 2018 scientific workshop convened by the
National Kidney Foundation, United States Food
and Drug Administration, and European Medi-
cines Agency evaluated the evidence for rate of
change in GFR (i.e., GFR slope) as an alternative
endpoint for kidney disease progression in
RCTs.7 On the basis of two separate meta-
analyses of observational cohorts and RCTs, the
workshop concluded that treatment effects on
GFR slope accurately predicted treatment effects
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on clinical outcomes, indicating GFR slope may be a viable
alternative endpoint for kidney disease progression. On the
basis of these data, some ongoing studies are using GFR
slope as an endpoint.8–14 Interventions that affect CKD
progression often produce early, short-term effects on GFR
(referred to hereon in as acute effects) that differ from their
long-term treatment effects (referred to hereon in as
chronic slope), as, for example, are seen with agents that
block the renin-angiotensin system (RAS) and sodium-
glucose cotransporter 2 (SGLT2) inhibitors.15–18 The pr-
esence of acute effects may complicate the design and
interpretation of RCTs in which GFR slope is the primary
outcome. For example, negative acute effects may increase
risk of falsely concluding no benefit, whereas positive acute
effects may increase the risk of falsely concluding treatment
benefit.

Although such acute effects are common, there is little
understanding of them. We sought to describe the nature
and magnitude of acute treatment effects on GFR in RCTs
in which kidney disease progression was assessed, and eval-

uate the consistency of these effects across key study level
characteristics, including intervention type, GFR, and
albuminuria.

METHODS

Datasets
As part of our previous work, we developed a pooled data-
base of RCTs by performing a systematic literature search to
identify relevant trials and obtaining individual participant
data for these studies.1,19–61 A complete list of search terms
used is provided in Supplemental Table 1 and the study
inclusion criteria are listed in Supplemental Table 2. Risks of
bias for each study were assessed using the risk-of-bias tool
of the Cochrane collaboration62 (Supplemental Figure 1). As
we have done previously, we included a separate randomized
treatment comparison for each independent treatment versus
control comparison for trials that evaluated more than one
intervention, but unlike in our prior work, we did not pool
small trials that had ,100 participants if the disease and
intervention were the same.1,34,42–44,48,49,51–54,63–65 For this
analysis, we excluded four RCTs that did not have at least
one follow-up study visit at or before 6 months postrandom-
ization.63–66 The study was approved by Tufts Medical Cen-
ter Institutional Review Board.

GFR
GFR was estimated using the Chronic Kidney Disease Epi-
demiology Collaboration (CKD-EPI) 2009 creatinine equa-
tion.67 Creatinine was standardized to isotope dilution
mass spectroscopy traceable reference methods using direct
comparison, or was reduced by 5%, as has previously been
described.68

Estimation of Acute Effects
Our primary definition of the acute treatment effect was
the mean difference in the change in GFR from baseline to
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Significance Statement

GFR slope has been proposed as a surrogate endpoint for pro-
gression to kidney failure in clinical trials studying patients with
CKD. Acute or immediate effects on GFR after treatment initia-
tion may complicate the interpretation of long-term treatment
effects. In this large meta-analysis of 53 randomized clinical stud-
ies of CKD progression, the authors found the magnitude and
nature of acute effects are variable across different interventions
and may be larger at a higher baseline GFR. Negative acute
effects (such as an acute reduction in GFR) were observed in tri-
als of renin-angiotensin system blockade and BP lowering,
whereas positive acute effects were more common in trials of
immunosuppressive therapies. Such information can inform the
optimal design and analysis plan for randomized clinical trials in
CKD.
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3 months between the treatment and control arms. The pri-
mary analysis used analysis of covariance to estimate the
acute effect while adjusting for baseline GFR as a covariate.
This analysis was restricted to studies with baseline GFR
and at least one planned measurement of GFR between
month 3 and month 6. For patients who had measurements
at 4, 5, or 6 months, the acute effect was computed at that
time. As we have previously performed, we categorized the
observed mean acute effect (ml/min per 1.73 m2) as very
large negative (#22.5), moderate-to-large negative (.22.5
to ,21.25), small negative (21.25 to ,0), small positive
(.0 to ,1.25), moderate-to-large positive (1.25 to ,2.5),
and very large positive ($2.5).69 In a sensitivity analysis,
we fitted a linear mixed effects model to GFR between
months 3 and 24 of follow-up, with covariate adjustment
for the baseline GFR level. This model includes fixed effects
for treatment assignment, baseline GFR and the interac-
tions of these factors with time, and random slopes and
intercepts for characterizing variation in GFR trajectories
across patients. For studies that had follow-up longer than
24 months, the follow-up time was truncated at 24 months
to ensure the long-term trajectory did not overly influence
the estimation of the acute effect. This sensitivity analysis
was able to formally evaluate mean GFR change to
3 months, even if the initial GFR follow-up assessment
occurred later than month 3, on the basis of the assump-
tion of linear mean decline between months 3 and 24. With
the exception of the analyses that related the size of the
acute effects to baseline GFR and urinary albumin-
creatinine ratio (UACR) levels (see below), acute effects
were estimated on the basis of change in GFR on the linear
(raw) scale and expressed in units of ml/min per 1.73 m2.

Meta-analyses
We performed separate random effects meta-analyses to
model the distribution of “true” treatment effects on the
acute GFR change to 3 months across all studies, and then
separately for subgroups of studies on the basis of interven-
tion type. Our random effects models assumed the acute
effects were normally distributed across studies. We used
these models to obtain the mean acute effect across the
studies included in each analysis, with a 95% confidence
interval. In addition, to assess heterogeneity of acute effects
between studies, we computed 95% coverage intervals from
the mean and the between-study SD of the acute effects
from the random-effects meta-analysis. The coverage inter-
val provides lower and upper limits that included 95% of
the acute effects across the studies, under the assumption
that the acute effects are normally distributed.

We performed separate univariable metaregression anal-
yses to explore the effect of mean baseline GFR and median
baseline UACR on the magnitude of the acute effects across
studies. For these analyses, we analyzed the longitudinal
GFR measurements for estimation of the acute effect on

both on the linear scale and natural log scale. When the
longitudinal GFR measurements were expressed on the lin-
ear scale, the acute effect is expressed in absolute units of
ml/min per 1.73 m2. When the longitudinal GFR measure-
ments were expressed on the natural log scale, the acute
effect is expressed as a relative effect and expressed as a
ratio of geometric mean GFR levels between the treatment
and control groups. Median baseline UACR was log trans-
formed in these analyses irrespective of whether the longi-
tudinal GFR measurements were expressed on the raw
scale or natural log scale. Baseline GFR was expressed on
the linear scale when the longitudinal GFR measurements
were expressed on the linear scale and on the natural log
scale when the longitudinal GFR measurements were log
transformed. In addition, to consider whether standard of
care at the time of the study affected the magnitude of the
acute effects, we also performed separate univariable meta-
regression analyses by year of publication.

We also performed multivariable metaregression to fur-
ther assess the effect of baseline mean GFR and median
UACR on acute effects after adjusting for intervention type,
and diabetes status. In additional sensitivity analyses, we
analyzed acute effects by quartiles of baseline GFR within
individual studies to compare associations observed at the
study and individual participant levels.

Analyses were performed using SAS version 9.4 (SAS
Institute, Cary, NC) and R 3.16.1 (R Project for Statistical
Computing, www.r-project.org).

RESULTS

We included 53 randomized studies enrolling 56,413 partici-
pants that had at least one visit by 6 months after randomiza-
tion. Aggregate characteristics of included studies stratified by
intervention are summarized in Table 1, Supplemental Table 3
(stratified by disease), and Supplemental Table 4. The median
baseline UACR was higher in trials with lower mean baseline
GFR, except for immunosuppression studies (Supplemental
Figure 2).

Acute Effects Overall and by Intervention
Across all studies, the mean acute effect (difference in GFR
between randomized groups) was 20.21 ml/min per 1.73 m2

over the first 3 months (95% confidence interval, –0.63 to
0.22). There was substantial heterogeneity across studies; the
95% coverage interval for the acute effect across studies
ranged from –2.50 to 12.08 ml/min per 1.73 m2 (Figure 1,
Supplemental Table 5, Supplemental Figure 3, and
Supplemental Figure 4). Results were similar in sensitivity
analyses using the simple linear mixed models (Supplemental
Table 5 and Supplemental Figure 5). For specific intervention
types, there is evidence that RAS blockade versus calcium
channel blockers (CCB), RAS blockade versus control,
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SGLT2 inhibitors versus placebo, and intensive BP lowering
led to negative average acute effects, and that immuno-
suppressive agents led to a positive average acute effect (Fig-
ure 1, Supplemental Table 5, and Supplemental Figure 4),
although in most cases statistical significance was not
reached. The substantial variation in acute effects across dif-
ferent trials persisted within the individual treatment compar-
ison classes (Supplemental Table 5 and Supplemental Figure
4), and by year of publication (Supplemental Figure 6). Het-
erogeneity was greatest among immunosuppression (95%
coverage interval across studies, 22.34–6.29 ml/min per 1.73
m2) and renin-angiotensin receptor blockers versus CCB tri-
als (95% coverage interval across studies, 24.28–1.07 ml/min
per 1.73 m2).

Supplemental Table 6 shows the categories of large,
moderate, or small observed mean acute effects overall and
by intervention. Overall, moderate to large (.22.5 to
#21.25 ml/min per 1.73 m2) or very large (#22.5 ml/min
per 1.73 m2) negative acute effects were observed in 13 tri-
als, moderate to large ($1.25 to ,2.5 ml/min per 1.73 m2)
or very large ($2.5 ml/min per 1.73 m2) positive acute
effects were observed in 13 trials, and small positive or neg-
ative acute effects were observed in the remaining studies.

Reflecting a combination of true variation in acute effects
and random sampling error, which predominates in smaller
trials, in these descriptive analyses negative acute effects
were observed in four out of four studies comparing RAS
blockade with CCBs, in 13 out of 23 studies comparing
RAS blockade to control, in one trial comparing SGLT2
inhibitors to control, and four out of five trials of immu-
nosuppressive agents. Positive acute effects were observed
in 11 of the 15 trials of immunosuppressive agents
(Supplemental Table 6).

Acute Effects by Baseline GFR
Larger negative acute effects (expressed in units of ml/min
per 1.73 m2) tended to be observed in studies with higher
levels of mean baseline GFR (P50.02; Figure 2). The asso-
ciation between the acute effect and baseline GFR remained
mostly consistent after adjustment for intervention and dia-
betic status at the study level (Supplemental Table 7). For
trials of RAS blockade versus control, the mean acute effect
(SE) varied from 0.24 (0.36) when the mean baseline GFR
was 20 ml/min per 1.73 m2 compared with 21.57 (0.42),
when mean baseline GFR was 80 ml/min per 1.73 m2

(Figure 3). For trials comparing low versus usual BP

Table 1. Clinical characteristics of the population overall and stratified by intervention

N studies N participants Age Female Black Diabetes GFR ACR

Overall 53 56413 61.5 (11.2) 22514 (37.4) 4601 (7.6) 45342 (75.3) 61.8 (26.3) 59 (13, 539)
Intervention
RASB versus control 19 25157 61.7 (11.1) 9964 (37.9) 1720 (6.5) 22650 (86.1) 64.0 (23.8) 83 (14, 691)
RASB versus CCB 4 1884 57.6 (9.1) 832 (36.3) 862 (37.6) 1520 (66.3) 52.1 (20.5) 836 (105, 1983)
BPa 5 2438 51.0 (12.8) 1157 (40.4) 1235 (43.1) 435 (15.2) 55.9 (26.3) 68 (24, 393)
Dietb 2 731 51.8 (12.4) 332 (39.6) 66 (7.9) 43 (5.1) 34.5 (13.5) 192 (42, 904)
ISa 15 1039 41.7 (12.9) 407 (33.0) 19 (1.5) 4 (0.3) 72.1 (29.2) 1557 (898, 2814)
Other 8 25164 64.0 (9.1) 9822 (36.8) 699 (2.6) 20690 (77.4) 61.4 (28.3) 30 (9, 186)
Values for age and GFR are presented as mean (SD) and for ACR as median (25th, 75th percentile). Values for other characteristics are presented as number (%).The
N participants presented here are for the primary analysis (analysis of covariance). RASB, renin angiotensin system blockers.
aBP, low versus usual BP control.
bDiet, low versus high protein diet.
cIS, various immunosuppression treatment versus control studies.
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Figure 1. Distribution and estimated mean acute effect on GFR by intervention. Coverage interval refers to the interval under
which 95% of the studies fall. 95% CI, 95% confidence interval; RASB, renin-angiotensin receptor blockers.
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control the mean acute effect varied from 0.24 (0.43) when
mean baseline GFR was 20 ml/min per 1.73 m2 compared
with 22.25 (0.55) when mean baseline GFR was 80 ml/min
per 1.73 m2 (Figure 3). There was no clear association
between the acute effect and mean baseline GFR for RAS
blockade versus CCB or for immunosuppression trials (Fig-
ure 3), although the wide confidence bands indicate low
statistical power for these analyses. The association between
the acute effect and baseline GFR did not substantively
change after removing trials of immunosuppressive agents
(data not shown). The effect persisted when GFR was log
transformed (Supplemental Figure 7 and Supplemental
Figure 8). For RAS blockade versus control, there was a simi-
lar relationship between the acute effect and baseline GFR
when participants were categorized by GFR quartiles within
individual studies (Supplemental Figure 9).

Acute Effects by Baseline UACR
Acute effects were also somewhat more negative for studies
with lower baseline UACR (Figure 2), although there was an
attenuation of the effect after adjustment for baseline GFR
(Supplemental Table 7). When stratified by intervention type,
the association between the acute effect and baseline UACR

was only observed in studies evaluating low versus usual BP
targets, with no association observed between baseline UACR
and the magnitude of acute effects for other interventions
(Figure 4). Results were similar in sensitivity analyses when
the acute effect was estimated on the basis of log transformed
GFR (Supplemental Figure 7 and Supplemental Figure 8).

DISCUSSION

We provide a comprehensive assessment of the magnitude
and consistency of acute treatment effects on GFR, across a
range of interventions and disease states in 53 RCTs evaluat-
ing treatments for CKD progression. Negative acute effects
were observed in the majority of RAS blockade, BP lowering,
and SGLT2 inhibitor trials, whereas positive acute effects
were observed in immunosuppression trials. However, even
within interventions there was substantial variability in the
observed acute effects. These findings have important impli-
cations for the design of clinical trials assessing kidney dis-
ease progression, and highlight the importance of
understanding the nature and magnitude of acute effects for
specific interventions in early-phase trials to inform the
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design and analysis of longer-term studies, specifically, the
decision to use a slope-based outcome or a clinical endpoint.

Negative acute effects are known to be common in inter-
ventions for CKD progression. For example, RAS blockade,
SGLT2 inhibitors, and BP lowering all lead to hemody-
namic changes in GFR, which are thought to differ from
the long-term protective effect on the kidney. These hemo-
dynamic effects influence the function of individual neph-
rons, not the number of nephrons, and are reversible on
treatment discontinuation. Negative acute effects may also
be a result of changes in non-GFR determinants of creati-
nine, as in, for example, decreased creatinine secretion by
the tubules. Regardless of the mechanism, negative acute
effects can increase the risk of false negative conclusions
about the treatment benefit. Negative acute effects may also
reduce the utility of slope-based analyses or time-to-event
analyses, with endpoints defined by 30% or 40% GFR
declines by eliminating power advantages of total GFR
slope, or time to lesser GFR decline compared with the
clinical endpoint.69–71 In a post-hoc analysis of the CAN-
VAS Program assessing the effect of the SGLT2 inhibitor
canagliflozin on different GFR decline thresholds (i.e., 50%,
40%, and 30% declines in GFR), the power advantage of
using lesser declines in GFR was only observed after

excluding the negative acute hemodynamic effect of
canagliflozin.72

One potential solution to overcome negative acute
effects and utilize slope as an endpoint is to use chronic
(rather than total) GFR slope, which computes the change
in GFR slope after the acute phase. However, this approach
may introduce bias from attenuation of the acute effect
over time or early discontinuation of the study treat-
ment.69,73,74 Another potential strategy is to assess GFR
slope from baseline to off-treatment measures, when it is
anticipated that acute and reversible hemodynamic effects
will no longer be present. Ongoing trials of sparsentan and
atrasentan in people with FSGS and IgA nephropathy plan
to account for anticipated negative acute effects by employ-
ing both approaches: excluding the acute effect from base-
line to week 6 and by assessing slope from baseline to 4
weeks off treatment.9,10 A third approach would be to
leverage an active run-in period to assign different baseline
GFRs to the active and control arms. In the Efficacy and
Safety of Selonsertib in Participants with Moderate to
Advanced DKD (MOSAIC, NCT04026165) trial, testing the
effects of selonsertib (which causes a negative acute effect
by inhibiting creatinine secretion) in people with diabetic
kidney disease, the GFR at the beginning of the run-in
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period is taken as the baseline measure for placebo-treated
participants, whereas the GFR at randomization is used as
the baseline measure in the active treatment arm.14 Finally,
artificial censoring of GFR values after treatment discontin-
uation while using weighting or imputation to reduce the
risk of selection bias may limit bias due to reversal of acute
effects after treatment discontinuation.69 As we have previ-
ously shown, if negative acute effects are relatively small
(e.g., ,21.5 ml/min 1.73 m2), adequate statistical power
can be achieved to detect treatment effects using total slope
if there is sufficient follow-up relative to the mean rate of
progression in the study population.69

We observed positive acute effects primarily in studies of
immunosuppressive agents. The cause is not well under-
stood, but it may be related to the early anti-inflammatory
action of immunosuppressive agents in glomerular diseases,
or the positive hemodynamic effect of steroids.75 If an inter-
vention has a positive acute effect but leads to harm on the
longer-term chronic slope, then positive acute effects could
lead to false conclusions about treatment benefits if assess-
ment of the treatment effect is performed on the total GFR
slope. Bardoxolone produces an early increase in GFR,
which has been hypothesized to be due to an increase in
mesangial surface area in addition to its longer-term effect
on reducing inflammation.76 Trials evaluating bardoxolone
have computed change in GFR using off-treatment GFR val-
ues to help determine whether the positive acute effect is a
false conclusion or a lasting effect of the drug on the kidney.
This underscores the importance of understanding the
mechanisms for earlier versus longer-term changes and
designing trials accordingly.

The use of GFR slope to assess kidney disease progres-
sion may be particularly relevant to trials conducted in the
early stages of CKD. The association between larger nega-
tive acute effects and higher baseline mean GFR remained
significant after adjustment for intervention and diabetes
status. Thus, studies seeking to use GFR slope should care-
fully consider the mechanism of action of an intervention,
study design and population characteristics (for example,
the proportions of participants recruited with different lev-
els of GFR), to ensure efficiency, and protect against the
risk of a falsely positive or negative conclusion. Addition-
ally, trials using GFR slope as an outcome must also ensure
sufficient information on safety, given the timeframes over
which individuals with CKD are treated.

We observed a high degree of heterogeneity in the magni-
tude of acute effects, even within interventions where the
nature and magnitude of the acute effect is anticipated due to
well-understood mechanisms of action. The reason for this
observation is unclear. Possible variation in study quality may
be one explanation of the heterogeneity; indeed, there was
greater heterogeneity among immunosuppressive studies,
which in general were smaller, and of lower quality. Because
the acute effect was defined as the difference in change in
GFR between treatment and control arms, differences in the

care in the control arm (i.e., placebo versus active treatment)
across different trials may have also contributed to the
observed heterogeneity, although accounting for year of pub-
lication did not affect the results. Future work including
newer studies with more consistent standard medical care in
the control arm may help to evaluate this hypothesis. In addi-
tion, as we previously demonstrated, combined assessment of
changes in GFR and albuminuria may predict treatment
effects and outcomes better than either alone.7 Further work
will assess the utility of combined assessments of treatment
effects on GFR slope and change in albuminuria that could
overcome the challenges from acute effects.

This study has a number of strengths, including a sys-
tematic literature search, inclusion of a large number of
studies with a diverse range of interventions, analyses of
individual participant data, and the use of multiple meth-
ods to estimate acute GFR effects. However, a number of
limitations should be considered when interpreting our
findings. First, we estimated the acute effect at 3 months,
but not all studies had measurements at this time point.
For some studies, the acute effect might have occurred
over a different time period and might not be linear. For
example, the negative acute effect with SGLT2 inhibition
calculated at 3 months is less than previously reported at 1
month, possibly due to an attenuation of the acute effect
over time.77,78 The timing of an acute effect is important to
appreciate due to its implications for study power; as the
timing of the acute effect increases, power to detect treat-
ment effects on total slope decreases. Second, acute effects
were calculated on the basis of estimated GFR rather than
measured GFR; although potentially important at an indi-
vidual level, this is less likely to affect our conclusions at a
population level. Third, although these analyses examined
the effect of intervention type, GFR and UACR individually
on the observed acute effects, effects might be multifacto-
rial and variation in acute effects could be due to other fac-
tors not captured. We also had relatively few studies for
some interventions, including trials of SGLT2 inhibitors,
and had no studies with pediatric participants. Finally,
despite the large number of studies and participants over-
all, there were an insufficient number of trials to evaluate
the magnitude of acute effects for individual classes of
immunosuppressive agents with different mechanisms of
action and to assess more granular subgroups, which could
have explained the causes of the observed heterogeneity
within these groups.

In summary, the magnitude and consistency of acute
effects is variable across different interventions and may be
larger at higher baseline GFR. Future work will involve
understanding the timing of the acute effect and the associa-
tions of the acute effects with subsequent outcomes and
longer-term treatments effects. Understanding the magnitude,
timing and nature of the acute effect for a specific interven-
tion and population can help inform the optimal design of
randomized trials in CKD.
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Appendix 2: Abbreviations, units, and terms 

 
AASK  African American Study of Kidney Disease and Hypertension  
ABCD Appropriate Blood Pressure Control in Diabetes trial 
ADVANCE Action in Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled 

Evaluation trial 
ALTITUDE Aliskiren Trial in Type 2 Diabetes Using Cardiorenal Endpoints 
ANCOVA ANalysis of COVariance 
BP blood pressure 
CanPREVENT Canadian Prevention of Renal and Cardiovascular Endpoints Trial 
CCB calcium channel blockers 
CKD chronic kidney disease 
Diet low protein diet 
EMPA-REG 
 OUTCOME 

Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients 
(referred to as EMPA-REG here on in) 

ESKD end-stage kidney disease 
GFR glomerular filtration rate (mL/min/1.73 m2) 
HALT-PKD  Halt Progression of Polycystic Kidney Disease study  
HKVIN Hong Kong study using Valsartan in IgA Nephropathy 
IDNT Irbesartan Diabetic Nephropathy Trial  
IgA immunoglobulin A nephropathy 
Interv intervention 
IS immunosuppresion 
MASTERPLAN Multifactorial Approach and Superior Treatment Efficacy in Renal Patients with the Aid of 

Nurse Practitioners study 
MDRD Study Modification of Diet in Renal Disease study 
N sample size 
NKF National Kidney Foundation 
ORIENT Olmesartan Reducing Incidence of Endstage Renal Disease in Diabetic Nephropathy Trial 
RASB  renin-angiotensin system blockade 
RCT randomized controlled trial 
REIN  Ramipril Efficacy In Nephropathy study  
RENAAL Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan study 
ROAD Renoprotection of Optimal Antiproteinuric Doses study 
SCr serum creatinine (mg/dL) 
SD standard deviation 
SE standard error 
SGLT2 Sodium-glucose co-transporter-2 
SHARP Study of Heart and Renal Protection 
STOP-IgAN Supportive Versus Immunosuppressive Therapy for the Treatment of Progressive IgA 

Nephropathy trial 
SUN-MACRO Sulodexide Macroalbuminuria trial 
UACR Urine albumin to creatinine ratio 
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Table S1. Search terms 

Database: Ovid MEDLINE(R)  
Search Strategy: 
1   kidney disease$.mp. (112999) 
2   chronic renal insufficiency.mp. (4302) 
3   chronic kidney disease.mp. (21120) 
4   renal disease.mp. (41875) 
5   IgA nephropathy.mp. (4903) 
6   lupus nephritis.mp. (6931) 
7   diabetic nephropathy.mp. (12605) 
8   glomerular disease.mp. (2168) 
9   polycystic kidney disease.mp. (5535) 
10   focal sclerosis.mp. (118) 
11   membranous nephropathy.mp. (2402) 
12   CKD.mp. (12820) 
13   Hypertension/ and (renal or kidney).mp. (36281) 
14   albuminuria.mp. (15383) 
15   proteinuria.mp. (38350) 
16   or/1-15 (222355) 
17   randomized controlled trial.pt. (403784) 
18   controlled clinical trial.pt. (89947) 
19   randomized controlled trials/ (100110) 
20   Random Allocation/ (85054) 
21   Double-blind Method/ (132413) 
22   Single-Blind Method/ (21138) 
23   clinical trial.pt. (495584) 
24   Clinical Trials.mp. or exp Clinical Trial/ (939562) 
25   (clinic$ adj25 trial$).tw. (271601) 
26   ((singl$ or doubl$ or trebl$ or tripl$) adj (mask$ or blind$)).tw. (129554) 
27   placebo$.tw. (159277) 
28   Placebos/ (32953) 
29   random$.tw. (710194) 
30   trial$.tw. (636501) 
31   (latin adj square).tw. (3512) 
32   or/17-31 (1577197) 
33   16 and 32 (23308) 
34   limit 33 to (guideline or meta analysis or practice guideline or "review") (5907) 
35   33 not 34 (17401) 
36   limit 35 to comment and (letter or editorial).pt. (187) 
37   limit 35 to (addresses or bibliography or biography or case reports or congresses or consensus 
development conference or consensus development conference, nih or dictionary or directory or 
editorial or festschrift or government publications or interview or lectures or legal cases or legislation or 
news or newspaper article or patient education handout or periodical index) (501) 
38   35 not (36 or 37) (16778) 
39   limit 38 to animals/ (2192) 
40   38 not 39 (14586) 
41   limit 40 to humans (14553) 
42   limit 40 to english language (13398) 
43   limit 42 to ("young adult (19 to 24 years)" or "adult (19 to 44 years)" or "young adult and adult (19-
24 and 19-44)" or "middle age (45 to 64 years)" or "middle aged (45 plus years)" or "all aged (65 and 
over)" or "aged (80 and over)") (11047) 
44   limit 43 to yr="2007 -Current" (5299) 
45   remove duplicates from 44 (5257) 



6 
 

Table S2. Study inclusion criteria 

 

1. Randomized controlled trial 

2. Article published in English 

3. Human subjects  

4. Adults 

5. Follow up > 12 months after first follow up measurement of UP or GFR 

6. Quantifiable albuminuria/proteinuria (i.e. not dipstick) 

7. Glomerular filtration rate > 15 mL/min/1.73 m2  

8. First follow up albuminuria/proteinuria or serum creatinine latest at 12 months  

9. Number of events (differ by disease)* 

  a. Glomerular disease : >10 events 

  b. Kidney disease, diabetes, hypertension, polycystic kidney disease, non-specified or other: 
follow-up > 500 person years and > 30 events 

  c. High risk population (diabetes, hypertension, cardiovascular disease, heart failure not selected 
for having kidney disease): follow-up > 1000 person years and > 30 events 

 
*Events - (end-stage kidney disease, doubling of serum creatinine, 40% or 30% decline in 
glomerular filtration rate)  
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Table S3. Clinical characteristics of the population overall and stratified by disease 
 

N Studies N 
participants 

Age Female Black Diabetes GFR ACR 

Overall 53 56413 61.5 (11.2) 22514 (37.4) 4601 (7.6) 45342 (75.3) 61.8 (26.3) 59 (13, 539) 

Disease         

CKD 25 13516 56.2 (13.9) 6055 (39.3) 3098 (20.1) 1854 (12.0) 38.3 (22.2) 140 (35, 700) 
Diabetes 12 41752 64.0 (8.5) 15973 (36.7) 1484 (3.4) 43481 (100.0) 69.8 (22.2) 35 (9, 361) 
Glomerular 16 1145 41.6 (12.7) 486 (36.2) 19 (1.4) 7 (0.5) 72.4 (29.2) 1497 (898, 2695) 

 
Values for age and GFR are presented as mean (standard deviation) and for ACR as median (25th, 75th 
percentile). Values for other characteristics are presented as number (percentage). N, sample size; GFR, 
estimated glomerular filtration rate (mL/min/1.73m2); ACR, albumin: creatinine ratio (mg/g); RASB, renin 
angiotensin system blockers; CB, calcium channel blockers; BP, low vs usual blood pressure control; Diet, 
low vs high protein diet; IS, immunosuppression; CKD, chronic kidney disease. 
Note: The N participants presented here are for the primary analysis (ANCOVA). 
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Table S4. Patient characteristics by study 

Intervention Disease Study N 
participants 

Age Female Black Diabetes eGFR ACR 

RASB v Control CKD (CNS) Kamper 55 49.8 (11.7) 28 (50.9) 0 (0.0) 0 (0.0) 14.8 (9.0) 654 (264, 1558) 
CKD (CNS) Ihle/Kincaid 67 45.5 (12.8) 34 (50.7) 0 (0.0) 0 (0.0) 16.5 (6.7) 856 (449, 1766) 
CKD (CNS) Hou 224 44.7 (15.4) 113 (50.4) 0 (0.0) 0 (0.0) 16.8 (4.4) 1012 (635, 1338) 
CKD (CNS) Hannedouche 98 51.2 (14.1) 47 (48.0) 0 (0.0) 0 (0.0) 23.4 (7.8) 958 (359, 1916) 
CKD (CNS) Brenner 106 46.7 (13.2) 38 (35.8) 37 (34.9) 0 (0.0) 35.4 (17.2) 747 (154, 1883) 
CKD (CNS) Toto 122 52.4 (11.6) 44 (36.1) 74 (60.7) 0 (0.0) 37.0 (17.5) 136 (60, 585) 
CKD (CNS) AIPRI 562 50.9 (12.5) 157 (27.9) 0 (0.0) 0 (0.0) 38.6 (11.6) 500 (78, 1473) 
CKD (CNS) REIN 322 48.8 (13.6) 73 (22.7) 2 (0.6) 0 (0.0) 41.5 (18.8) 1646 (916, 2599) 
CKD (CNS) Van Essen 103 50.6 (12.9) 35 (34.0) 1 (1.0) 0 (0.0) 48.1 (19.3) 299 (60, 1497) 
CKD (HTN) AASK 876 54.6 (10.7) 339 (38.7) 876 (100.0) 0 (0.0) 48.9 (15.8) 74 (26, 364) 
CKD (PKD) HALT-PKD B 462 48.8 (8.2) 238 (51.5) 12 (2.6) 0 (0.0) 48.2 (11.8) 30 (17, 76) 
CKD (PKD) HALT-PKD A 542 36.6 (8.3) 270 (49.8) 13 (2.4) 0 (0.0) 91.9 (17.7) 18 (12, 33) 
Diabetes ALTITUDE 8150 64.4 (9.7) 2572 (31.6) 267 (3.3) 8150 (100.0) 58.4 (21.2) 284 (57, 881) 
Diabetes ADVANCE 10876 65.7 (6.4) 4611 (42.4) 37 (0.3) 10876 (100.0) 78.3 (17.3) 15 (7, 40) 
Diabetes (CKD) RENAAL 1513 60.2 (7.4) 557 (36.8) 230 (15.2) 1513 (100.0) 41.3 (13.2) 1307 (616, 2732) 
Diabetes (CKD) ORIENT 566 59.2 (8.1) 175 (30.9) 0 (0.0) 566 (100.0) 47.5 (12.1) 1270 (617, 2285) 
Diabetes (CKD) IDNT 1135 58.8 (7.7) 363 (32.0) 139 (12.2) 1135 (100.0) 50.2 (19.5) 1816 (1051, 3234) 
Diabetes (CKD) Lewis 1993 407 34.5 (7.6) 191 (46.9) 32 (7.9) 407 (100.0) 73.2 (25.3) 1111 (605, 2299) 
Glom (IgAN) HKVIN 109 40.5 (9.5) 79 (72.5) 0 (0.0) 3 (2.8) 75.1 (29.0) 958 (629, 1560) 

RASB v CCB CKD (CNS) Zucchelli 121 55.4 (10.9) 47 (38.8) 0 (0.0) 0 (0.0) 24.9 (10.1) 599 (251, 1557) 
CKD (HTN) AASK 652 54.4 (10.8) 255 (39.1) 652 (100.0) 0 (0.0) 48.7 (15.8) 67 (25, 343) 
Diabetes ABCD 392 59.0 (8.2) 130 (33.2) 63 (16.1) 392 (100.0) 72.1 (18.7) 127 (56, 661) 
Diabetes (CKD) IDNT 1128 59.2 (7.5) 400 (35.5) 147 (13.0) 1128 (100.0) 50.1 (18.7) 1740 (1009, 3059) 

Low v Usual BP CKD (CNS) MDRD Study B 255 50.8 (12.8) 104 (40.8) 13 (5.1) 13 (5.1) 20.3 (5.8) 425 (102, 1222) 
CKD (CNS) MDRD Study A 584 52.2 (12.2) 228 (39.0) 53 (9.1) 30 (5.1) 40.7 (11.0) 120 (33, 668) 
CKD (HTN) AASK 1093 54.6 (10.7) 425 (38.9) 1093 (100.0) 0 (0.0) 48.7 (15.7) 70 (25, 349) 
CKD (PKD) HALT-PKD A 542 36.6 (8.3) 270 (49.8) 13 (2.4) 0 (0.0) 91.9 (17.7) 18 (12, 33) 
Diabetes ABCD 392 59.0 (8.2) 130 (33.2) 63 (16.1) 392 (100.0) 72.1 (18.7) 127 (56, 661) 

Low v Usual Diet CKD (CNS) MDRD Study B 255 50.8 (12.8) 104 (40.8) 13 (5.1) 13 (5.1) 20.3 (5.8) 425 (102, 1222) 
CKD (CNS) MDRD Study A 584 52.2 (12.2) 228 (39.0) 53 (9.1) 30 (5.1) 40.7 (11.0) 120 (33, 668) 

Immuno- 
suppression 

Glom (IgAN) Pozzi 2012 46 42.0 (11.5) 9 (19.6) 0 (0.0) 0 (0.0) 27.8 (7.0) 1497 (898, 2395) 
Glom (IgAN) Donadio 2001 72 46.3 (13.1) 13 (18.1) 2 (2.8) 0 (0.0) 40.8 (14.4) 971 (441, 1886) 
Glom (IgAN) STOP-IgAN 151 44.2 (12.4) 34 (22.5) 0 (0.0) 0 (0.0) 59.7 (27.6) 928 (641, 1229) 
Glom (IgAN) Maes 34 44.8 (11.3) 10 (29.4) 0 (0.0) 0 (0.0) 62.2 (18.9) 596 (353, 1599) 
Glom (IgAN) Donadio 1999 96 38.5 (13.4) 26 (27.1) 0 (0.0) 0 (0.0) 66.1 (22.5) 1257 (719, 2066) 
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Intervention Disease Study N 
participants 

Age Female Black Diabetes eGFR ACR 

Glom (IgAN) Pozzi 2010 197 39.2 (12.6) 55 (27.9) 0 (0.0) 0 (0.0) 74.7 (25.5) 1198 (898, 1617) 
Glom (IgAN) Pozzi 2004 83 38.6 (11.7) 25 (30.1) 0 (0.0) 0 (0.0) 87.2 (21.6) 1138 (838, 1437) 
Glom (IgAN) Schena 95 33.7 (11.1) 29 (30.5) 0 (0.0) 2 (2.1) 91.3 (23.7) 982 (790, 1497) 
Glom (Lupus) Lewis 1992 79 32.6 (12.0) 66 (83.5) 17 (21.5) 0 (0.0) 56.4 (36.3) 2635 (1165, 4905) 
Glom (Lupus) Chan 61 40.1 (9.9) 51 (83.6) 0 (0.0) 2 (3.3) 70.4 (26.3) 2359 (1557, 4216) 
Glom (Membran) Ponticelli 1998 91 49.9 (10.7) 28 (30.8) 0 (0.0) 0 (0.0) 82.5 (19.9) 3293 (2395, 5210) 
Glom (Membran) Ponticelli 1989 75 44.4 (10.9) 15 (20.0) 0 (0.0) 0 (0.0) 87.7 (23.0) 2874 (2275, 4731) 
Glom (Membran) Ponticelli 1992 76 46.7 (13.3) 26 (34.2) 0 (0.0) 0 (0.0) 89.0 (25.1) 3234 (2455, 4641) 
Glom (Membran) Praga 2007 48 46.6 (12.5) 8 (16.7) 0 (0.0) 0 (0.0) 89.3 (20.2) 4338 (2640, 5828) 
Glom (Membran) Ponticelli 2006 31 49.3 (10.5) 12 (38.7) 0 (0.0) 0 (0.0) 92.6 (22.2) 3353 (2395, 4850) 

SGLT2 inhibitors Diabetes EMPA-REG 6936 63.2 (8.6) 1977 (28.5) 354 (5.1) 6936 (100.0) 76.2 (19.9) 18 (7, 72) 

Others CKD (CNS) Goicoechea 113 71.8 (8.7) 40 (35.4) 0 (0.0) 42 (37.2) 40.5 (12.4) 35 (15, 362) 
CKD (CNS) ROAD 339 50.9 (13.7) 126 (37.2) 0 (0.0) 0 (0.0) 29.0 (13.4) 958 (641, 1599) 
CKD (CNS) MASTERPLAN 640 60.5 (12.5) 199 (31.1) 49 (7.7) 156 (24.4) 36.7 (15.4) 147 (51, 449) 
CKD (CNS) CanPREVENT 458 65.1 (7.5) 250 (54.6) 25 (5.5) 144 (31.4) 47.6 (9.9) 72 (48, 115) 
CKD (CNS) SHARP 6245 62.9 (11.7) 2363 (37.8) 119 (1.9) 1426 (22.8) 26.2 (12.3) 206 (44, 762) 
Diabetes ADVANCE 10876 65.7 (6.4) 4611 (42.4) 37 (0.3) 10876 (100.0) 78.3 (17.3) 15 (7, 40) 

 Diabetes (CKD) SUN-MACRO 1110 63.5 (9.3) 256 (23.1) 115 (10.4) 1110 (100.0) 33.7 (9.7) 1075 (569, 1798) 

Note: Values for categorical variables are given as number (percentage); values for continuous variables, as mean (standard deviation) except ACR which is shown as median (25th, 
75th percentile). Participants with missing data on age, race, sex, serum creatinine, urine albumin were excluded. 
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Table S5.  Estimated acute effects using different methods to compute the acute effect on GFR, overall 

and by intervention and disease 

 
ANCOVA, Analysis of covariance method; N, number of studies; CI, confidence interval; RASB, renin-
angiotensin receptor blockers; CCB, calcium channel blockers; BP, blood pressure; SGLT2, sodium-glucose 
co-transporter-2; CKD, chronic kidney disease.  

  ANCOVA Linear mixed model 

Subgroup 
N 

Studies 
Mean  

(95% CI) 
Coverage 
interval 

Mean  
(95% CI) 

Coverage 
interval 

Overall 53 -0.21 (-0.63, 0.22) (-2.50, 2.08) -0.15 (-0.54, 0.25) (-2.31, 2.01) 
Intervention      
RASB v CCB 4 -1.60 (-3.25, 0.05) (-4.28, 1.07) -1.39 (-3.10, 0.32) (-4.30, 1.52) 
RASB vs Control 19 -0.51 (-1.06, 0.04) (-2.39, 1.38) -0.30 (-0.83, 0.23) (-2.16, 1.56) 
Immunosuppression 15 1.97 (0.01, 3.93) (-2.34, 6.29) 0.96 (-0.64, 2.56) (-2.03, 3.95) 
Low v Usual BP 5 -0.97 (-2.02, 0.09) (-2.83, 0.89) -0.91 (-2.02, 0.20) (-2.97, 1.16) 
SGLT2 inhibitors 1 -1.81 (-2.25, -1.36) (-1.81, -1.81) -1.43 (-1.92, -0.94) (-1.43, -1.43) 
Disease      
CKD 25 -0.02 (-0.56, 0.53) (-2.30, 2.27) 0.10 (-0.42, 0.62) (-2.14, 2.34) 
Diabetes 12 -1.01 (-1.62, -0.40) (-2.78, 0.76) -0.88 (-1.43, -0.33) (-2.46, 0.69) 
Glomerular 16 1.55 (-0.08, 3.18) (-1.72, 4.83) 0.55 (-0.73, 1.83) (-1.10, 2.20) 
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Table S6. Magnitude of acute effects on GFR, by intervention  

 

Subgroup 
Very 
Large 

Negative 

Moderate-
to-Large 
Negative 

Small 
Negative 

No 
Acute 
Effect 

Small 
Positive 

Moderate-
to-Large 
Positive 

Very 
Large 

Positive 

 <=-2.5 
>-2.5 &  
<=-1.25 

>-1.25 & 
<0 

0 
>0 & 
<1.25 

>=1.25 & 
<2.5 

>=2.5 

Overall 5 8 10 0 17 5 8 

RASB vs CCB 1 1 2 0 0 0 0 

RASB vs Control 1 4 4 0 10 0 0 

Immunosuppression 2 1 1 0 1 3 7 

Low vs Usual BP 1 1 2 0 1 0 0 

SGLT2 inhibitors 0 1 0 0 0 0 0 

Values displayed are the number of studies in each magnitude category. 
RASB, renin-angiotensin receptor blockers; CCB, calcium channel blockers; BP, blood pressure; SGLT2, 
sodium-glucose co-transporter-2.  
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Table S7. Multivariable meta-regression of acute effects on GFR, both for GFR and ACR 

A. GFR 
 

Model Variable Estimate (95% CI) P-value 

GFR GFR -0.21 (-0.39, -0.03) 0.019 

GFR+Interv GFR -0.25 (-0.40, -0.10) 0.001  
RASB vs control -0.74 (-1.22, -0.25) 0.003 

GFR+Interv+Diab GFR -0.19 (-0.37, -0.02) 0.033 

 RASB vs control -0.48 (-1.10, 0.14) 0.132 
 Diabetes -0.26 (-0.66, 0.14) 0.199 

 
B. ACR 
 

Model Variable Estimate (95% CI) P-value 

ACR ACR 0.18 (0.00, 0.37) 0.047 

ACR+Interv ACR 0.18 (0.02, 0.35) 0.029 

 RASB vs control -0.46 (-0.98, 0.07) 0.088 

ACR+Interv+Diab ACR 0.18 (0.03, 0.33) 0.019 

 RASB vs control -0.10 (-0.66, 0.45) 0.720 

 Diabetes -0.46 (-0.81, -0.10) 0.011 

ACR+GFR ACR 0.12 (-0.08, 0.32) 0.260 
 GFR -0.14 (-0.35, 0.08) 0.210 

 
CI, confidence interval; GFR, glomerular filtration rate; interv, intervention; Diab, diabetes; ACR, albumin: 

creatinine ratio; RASB, renin-angiotensin receptor blocker 

Note: Estimates for GFR are denoted in 10 unit increases in ml/min/1.73m2 



13 
 

Figure S1. Evaluation of bias in studies included in meta-analysis 

  

Random sequence 
generation 

Allocation 
concealment 

Blinding of 
participants 

Blinding of 
outcome 

assessment 

Incomplete 
outcome data 

Selective 
reporting 

Kamper + + - + ? + 

Ihle/Kincaid ? ? + + + + 

Hou + + + + + + 

Hannedouche + ? - + ? + 

Brenner + ? + + - + 

Toto ? ? ? ? + + 

AIPRI ? ? + + + + 

REIN ? ? + + + + 

Van Essen ? ? + + + + 

AASK ? ? + + + + 

HALT-PKD B + ? + + + + 

HALT-PKD A + + + + + + 

ALTITUDE + + + + + + 

ADVANCE + + + + + + 

RENAAL + + + + + + 

ORIENT ? ? + + ? + 

IDNT + ? + + + + 

Lewis 1993 + ? + + + + 

HKVIN + + + + + + 

Zucchelli ? ? ? + + + 

ABCD ? ? + + + + 

MDRD Study + + - + ? + 

Pozzi 2012 ? ? - + + + 

Donadio 2001 - - - + + + 

STOP-IgAN + ? - + + + 

Maes ? ? ? + + + 

Donadio 1999 ? ? - + ? + 

Pozzi 2010 + ? - + ? + 

Pozzi 2004 + ? - + + + 

Schena + + - + + + 

Lewis 1992 + + ? ? + + 

Chan + ? - + + + 

Ponticelli 1998 + ? - + + + 

Ponticelli 1989 + + - + + + 

Ponticelli 1992 ? ? ? + + + 

Praga 2007 + + - + + + 

Ponticelli 2006 + + ? ? + + 

ROAD + + - + + + 

SUN-MACRO + ? + + + + 

EMPA-REG 
OUTCOME 

+ ? + + + + 

Goicoechea + ? ? + + + 

MASTERPLAN + ? ? - ? + 

CanPREVENT - + - + ? + 

SHARP + + + + + + 

 
(Legend on the following page)  
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Key: Green and + indicates low risk of bias; red and ─ indicates high risk of bias; yellow and ? indicates unclear 
risk of bias.  
Risks of bias for each study were assessed using the risk-of-bias tool of the Cochrane collaboration. The tool 
includes these components: sequence generation (i.e. computer-generated random number, use of random 
number table or other truly random process); allocation concealment (i.e. web-based or telephone central 
randomization or consecutively numbered sealed opaque envelopes); blinding of participants, study 
personnel and outcome assessors; incomplete outcome data; selective outcome reporting. Each item of 
potential bias was scored as low, high or unclear based on criteria specified by the Cochrane Handbook1.  
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Figure S2. Mean baseline GFR and median baseline UACR across studies  

 

 
GFR, glomerular filtration rate; UACR, urine albumin creatinine ratio; RASB, renin-angiotensin receptor 
blockers; CCB, calcium channel blockers; BP, blood pressure; SGLT2, Sodium-glucose Cotransporter-2; N, 
number of studies. 
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Figure S3. Distribution and estimated mean acute effect on GFR by disease 

 

 
 
CI, confidence intervals; CKD, chronic kidney disease. Coverage interval refers to the interval under which 
95% of the studies fall; N, sample size. 
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Figure S4: Forest plot of acute effect on GFR by intervention, all studies, ANCOVA method 

  
RASB, renin-angiotensin receptor blockers; CCB, calcium channel blockers; BP, blood pressure; SGLT2, 
sodium-glucose cotransporter-2; GFR, glomerular filtration rate; N, sample size (participants).   
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Figure S5:  Forest plot of acute effects on GFR by intervention, all studies, sensitivity analysis using the 

linear mixed model 

 
 
RASB, renin-angiotensin receptor blockers; CCB, calcium channel blockers; BP, blood pressure; SGLT2, 
sodium-glucose cotransporter-2; GFR, glomerular filtration rate; N, sample size (participants).   



19 
 

Figure S6: Variation in acute effect on GFR by year of study publication 

 
RASB, renin-angiotensin receptor blockers; CCB, calcium channel blockers; BP, blood pressure; SGLT2, 
sodium-glucose cotransporter-2; GFR, glomerular filtration rate; CI, confidence interval; β, slope; N, sample 
size.  
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Figure S7: Meta regression plot of variation in acute effect by (A) baseline natural log-transformed eGFR 

and (B) natural log acute effect by UACR 

 
(A) 

 
(B) 

 
 
RASB, renin-angiotensin receptor blockers; CCB, calcium channel blockers; BP, blood pressure; SGLT2, 
Sodium-glucose Cotransporter-2; GFR, glomerular filtration rate.   
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Figure S8: Meta regression plot of variation in acute effect by intervention by (A) baseline natural log-

transformed eGFR and (B) natural log acute effect by UACR 

 
(A) 

 
 
 
(B) 

 
 
RASB, renin-angiotensin receptor blockers;  CCB, calcium channel blockers;  BP, blood pressure; UACR, 
urine albumin: creatinine ratio; GFR, glomerular filtration rate.
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Figure S9: Variation in acute effect on GFR by within-study GFR quartiles, by intervention 

 
RASB, renin-angiotensin receptor blockers; CCB, calcium channel blockers; BP, blood pressure; IS, 
immunosuppression; GFR, glomerular filtration rate 
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