7 research outputs found

    Quasi-solid-state electrolyte for rechargeable high-temperature molten salt iron-air battery

    Get PDF
    Molten salts are a unique type of electrolyte enabling high-temperature electrochemical energy storage (EES) with unmatched reversible electrode kinetics and high ion-conductivities, and hence impressive storage capacity and power capability. However, their high tendency to evaporate and flow at high temperatures challenges the design and fabrication of the respective EES devices in terms of manufacturing cost and cycling durability. On the other hand, most of these EES devices require lithium-containing molten salts as the electrolyte to enhance performances, which not only increases the cost but also demands a share of the already limited lithium resources. Here we report a novel quasi-solid-state (QSS) electrolyte, consisting of the molten eutectic mixture of Na2CO3-K2CO3 and nanoparticles of yttrium stabilized zirconia (YSZ) in a mass ratio of 1:1. The QSS electrolyte has relatively lower volatility in comparison with the pristine molten Na2CO3-K2CO3 eutectic, and therefore significantly suppresses the evaporation of molten salts, thanks to a strong interaction at the interface between molten salt and YSZ nanoparticles at high temperatures. The QSS electrolyte was used to construct an iron-air battery that performed excellently in charge-discharge cycling with high columbic and energy efficiencies. We also propose and confirm a redox mechanism at the three-phase interlines in the negative electrode. These findings can help establish a simpler and more efficient approach to designing low-cost and high-performance molten salt metal-air batteries with high stability and safety

    Development of SSR markers in Paeonia based on De Novo transcriptomic assemblies.

    No full text
    Peony is a famous ornamental and medicinal plant in China, and peony hybrid breeding is an important means of germplasm innovation. However, research on the genome of this species is limited, thereby hindering the genetic and breeding research on peony. In the present study, simple sequence repeat (SSR) locus analysis was performed on expressed sequence tags obtained by the transcriptome sequencing of Paeonia using Microsatellite software. Primers with polymorphism were obtained via polymerase chain reaction amplification and electrophoresis. As a result, a total of 86,195 unigenes were obtained by assembling the transcriptome data of Paeonia. Functional annotations were obtained in seven functional databases including 49,172 (Non-Redundant Protein Sequence Database: 57.05%), 38,352 (Nucleotide Sequence Database: 44.49%), 36,477 (Swiss Prot: 42.32%), 38,905 (Clusters of Orthologous Groups for Eukaryotic Complete Genomes: 45.14%), 37,993 (Kyoto Encyclopedia of Genes and Genomes: 44.08%), 26,832 (Gene Ontology: 31.13%) and 37,758 (Pfam: 43.81%) unigenes. Meanwhile, 21,998 SSR loci were distributed in 17,567 unigenes containing SSR sequences, and the SSR distribution frequency was 25.52%, with an average of one SSR sequence per 4.66 kb. Mononucleotide, dinucleotide, and trinucleotide were the main repeat types, accounting for 55.74%, 25.58%, and 13.21% of the total repeat times, respectively. Forty-five pairs of the 100 pairs of primers selected randomly could amplify clear polymorphic bands. The polymorphic primers of these 45 pairs were used to cluster and analyze 16 species of peony. The new SSR molecular markers can be useful for the study of genetic diversity and marker-assisted breeding of peony
    corecore