18 research outputs found

    Self-assembling and pH-responsive protein nanoparticle as potential platform for targeted tumor therapy

    Get PDF
    Frequent injections at high concentrations are often required for many therapeutic proteins due to their short in vivo half-life, which usually leads to unsatisfactory therapeutic outcomes, adverse side effects, high cost, and poor patient compliance. Herein we report a supramolecular strategy, self-assembling and pH regulated fusion protein to extend the in vivo half-life and tumor targeting ability of a therapeutically important protein trichosanthin (TCS). TCS was genetically fused to the N-terminus of a self-assembling protein, Sup35p prion domain (Sup35), to form a fusion protein of TCS-Sup35 that self-assembled into uniform spherical TCS-Sup35 nanoparticles (TCS-Sup35 NP) rather than classic nanofibrils. Importantly, due to the pH response ability, TCS-Sup35 NP well retained the bioactivity of TCS and possessed a 21.5-fold longer in vivo half-life than native TCS in a mouse model. As a result, in a tumor-bearing mouse model, TCS-Sup35 NP exhibited significantly improved tumor accumulation and antitumor activity without detectable systemic toxicity as compared with native TCS. These findings suggest that self-assembling and pH responding protein fusion may provide a new, simple, general, and effective solution to remarkably improve the pharmacological performance of therapeutic proteins with short circulation half-lives

    Identification and molecular characterization of novel duck reoviruses in Henan Province, China

    Get PDF
    Novel Duck reovirus (NDRV) is an ongoing non-enveloped virus with ten double-stranded RNA genome segments that belong to the genus Orthoreovirus, in the family Reoviridae. NDRV-associated spleen swelling, and necrosis disease have caused considerable economic losses to the waterfowl industry worldwide. Since 2017, a significant number of NDRV outbreaks have emerged in China. Herein, we described two cases of duck spleen necrosis disease among ducklings on duck farms in Henan province, central China. Other potential causative agent, including Muscovy duck reovirus (MDRV), Duck hepatitis A virus type 1 (DHAV-1), Duck hepatitis A virus type 3 (DHAV-3), Newcastle disease virus (NDV), and Duck tembusu virus (DTMUV), were excluded by reverse transcription-polymerase chain reaction (RT-PCR), and two NDRV strains, HeNXX-1/2021 and HNJZ-2/2021, were isolated. Sequencing and phylogenetic analysis of the σC genes revealed that both newly identified NDRV isolates were closely related to DRV/SDHZ17/Shandong/2017. The results further showed that Chinese NDRVs had formed two distinct clades, with late 2017 as the turning point, suggesting that Chinese NDRVs have been evolving in different directions. This study identified and genetic characteristics of two NDRV strains in Henan province, China, indicating NDRVs have evolved in different directions in China. This study provides an insight into the ongoing emerged duck spleen necrosis disease and enriches our understanding of the genetic diversity and evolution of NDRVs

    Electronic states of disordered grain boundaries in graphene prepared by chemical vapor deposition

    Get PDF
    Perturbations of the two dimensional carbon lattice of graphene, such as grain boundaries, have significant influence on the charge transport and mechanical properties of this material. Scanning tunneling microscopy measurements presented here show that localized states near the Dirac point dominate the local density of states of grain boundaries in graphene grown by chemical vapor deposition. Such low energy states are not reproduced by theoretical models which treat the grain boundaries as periodic dislocation-cores composed of pentagonal-heptagonal carbon rings. Using ab initio calculations, we have extended this model to include disorder, by introducing vacancies into a grain boundary consisting of periodic dislocation-cores. Within the framework of this model we were able to reproduce the measured density of states features. We present evidence that grain boundaries in graphene grown on copper incorporate a significant amount of disorder in the form of two-coordinated carbon atoms. © 2013 Elsevier Ltd. All rights reserved

    CD4 and CD8 T Cells Directly Recognize Murine Gammaherpesvirus 68-Immortalized Cells and Prevent Tumor Outgrowth

    Get PDF
    There has been extensive research regarding T cell recognition of Epstein-Barr virus-transformed cells; however, less is known regarding the recognition of B cells immortalized by gamma-2 herpesviruses. Here we show that B cells immortalized by murine gammaherpesvirus 68 (MHV-68, γHV-68) can be controlled by either CD4 or CD8 T cells in vivo. We present evidence for the direct recognition of infected B cells by CD4 and CD8 T cells. These data will help in the development of immunotherapeutic approaches combating gamma-2 herpesvirus-related disease

    Hydraulic gap control of rolling mill based on self-tuning fuzzy PID

    No full text
    A closed-loop control system for the hydraulic gap control (HGC) that is driven by electrohydraulic servo valves is developed for practical application. Based on the mathematical model estimated by a system identification technique, the control algorithm is designed, and the fuzzy inference rules are established. The simulation and field test results of the step response and the position tracking that is carried out on the HGC system of a cold rolling mill show that when compared with the conventional PID control system, the self-tuning fuzzy PID system has the characteristics of fast response, short rise time, no lag, small overshoot, and strong anti-interference ability. At the same time, the self-tuning fuzzy PID control algorithm can not only improve the position tracking ability of the HGC system, but can also tune the servo valve to overcome the nonlinearity of the HGC system

    Chitosan/Calcium-Coated Ginsenoside Rb1 Phosphate Flower-like Microparticles as an Adjuvant to Enhance Immune Responses

    No full text
    Infectious bursal disease (IBD) is a highly contagious immunocompromising disorder that caused great economic losses in the poultry industry. The field-level control over IBD is primarily via vaccination. The development of a highly effective IBV vaccine has drawn great attention worldwide. Chitosan/Calcium Phosphate (CS/CaP) nanoparticle was a newly developed effective biological delivery system for drug and antigen. Ginsenoside Rb1 is one of the main bioactive components of ginseng root extract, which has antioxidant, anti-inflammatory and immunological enhancement effects. Until now, the combined effect of CS/CaP and ginsenoside Rb1 on the chicken immune response had remained unknown. In this study, the GRb1 and IL-4 were encapsulated into Calcium phosphate and chitosan core structure nanoparticles microspheres (GRb1/IL-4@CS/CaP), and the effect of a newly developed delivery system on an infectious bursal disease virus (IBDV) attenuated vaccine was further evaluated. The results demonstrated that GRb1/IL-4@CS/CaP treatment could induce the activation of chicken dendritic cells (DCs), with the upregulated expression of MHCII and CD80, and the increased production of IL-1β and TNF-α. Importantly, GRb1/IL-4@CS/CaP could trigger a higher level of IBDV-specific IgG and a higher ratio of IgG2a/IgG1 than the traditional adjuvant groups, promoting the production of cytokine, including IFN-γ, TNF-α, IL-4, IL-6, IL-1α, and IL-1β, in chicken serum after 28 d and 42 d post-vaccine. Taken in all, GRb1/IL-4@CS/CaP could elicit prolonged vigorous immune responses for IBDV attenuated vaccine in chicken, which might provide an effective adjuvant system for avian vaccine development

    Virus usurps alternative splicing to clear the decks for infection

    No full text
    Abstract Since invasion, there will be a tug-of-war between host and virus to scramble cellular resources, for either restraining or facilitating infection. Alternative splicing (AS) is a conserved and critical mechanism of processing pre-mRNA into mRNAs to increase protein diversity in eukaryotes. Notably, this kind of post-transcriptional regulatory mechanism has gained appreciation since it is widely involved in virus infection. Here, we highlight the important roles of AS in regulating viral protein expression and how virus in turn hijacks AS to antagonize host immune response. This review will widen the understandings of host-virus interactions, be meaningful to innovatively elucidate viral pathogenesis, and provide novel targets for developing antiviral drugs in the future
    corecore