867 research outputs found

    Role of reaction kinetics and mass transport in glucose sensing with nanopillar array electrodes

    Get PDF
    The use of nanopillar array electrodes (NAEs) for biosensor applications was explored using a combined experimental and simulation approach to characterize the role of reaction kinetics and mass transport in glucose detection with NAEs. Thin gold electrodes with arrays of vertically standing gold nanopillars were fabricated and their amperometric current responses were measured under bare and functionalized conditions. Results show that the sensing performances of both the bare and functionalized NAEs were affected not only by the presence and variation of the nanoscale structures on the electrodes but also by the reaction kinetics and mass transport of the analyte species involved. These results will shed new light for enhancing the performance of nanostructure based biosensors

    Magnetic properties of charged spin-1 Bose gases with ferromagnetic coupling

    Full text link
    Magnetic properties of a charged spin-1 Bose gas with ferromagnetic interactions is investigated within mean-field theory. It is shown that a competition between paramagnetism, diamagnetism and ferromagnetism exists in this system. It is shown that diamagnetism, being concerned with spontaneous magnetization, cannot exceed ferromagnetism in very weak magnetic field. The critical value of reduced ferromagnetic coupling of paramagnetic phase to ferromagnetic phase transition Iˉc\bar I_{c} increases with increasing temperature. The Lande-factor gg is introduced to describe the strength of paramagnetic effect which comes from the spin degree of freedom. The magnetization density Mˉ\bar M increases monotonically with gg for fixed reduced ferromagnetic coupling Iˉ\bar I as Iˉ>Iˉc\bar I>\bar I_{c}. In a weak magnetic field, ferromagnetism makes immense contribution to the magnetization density. While at a high magnetic field, the diamagnetism inclines to saturate. Evidence for condensation can be seen in the magnetization density at weak magnetic field.Comment: 6 pages, 7 figures, accepted for publication in Journal of Physics: Condensed Matte

    Characterization of heparin-binding site of tissue transglutaminase:its importance in cell surface targeting, matrix deposition, and cell signaling

    Get PDF
    Tissue transglutaminase (TG2) is a multifunctional Ca2+ activated protein crosslinking enzyme secreted into the extracellular matrix (ECM), where it is involved in wound healing and scarring, tissue fibrosis, celiac disease and metastatic cancer. Extracellular TG2 can also facilitate cell adhesion important in wound healing through a non-transamidating mechanism via its association with fibronectin (FN), heparan sulphates (HS) and integrins. Regulating the mechanism how TG2 is translocated into the ECM therefore provides a strategy for modulating these physiological and pathological functions of the enzyme. Here, through molecular modelling and mutagenesis we have identified the HS binding site of TG2 202KFLKNAGRDCSRRSSPVYVGR222. We demonstrate the requirement of this binding site for translocation of TG2 into the ECM through a mechanism involving cell surface shedding of HS. By synthesizing a peptide NPKFLKNAGRDCSRRSS corresponding to the HS binding site within TG2, we also demonstrate how this mimicking peptide can in isolation compensate the RGD-induced loss of cell adhesion on FN via binding to syndecan-4, leading to activation of PKCa, pFAK-397 and ERK1/2 and the subsequent formation of focal adhesions and actin cytoskeleton organization. A novel regulatory mechanism for TG2 translocation into the extracellular compartment that depends upon TG2 conformation and the binding of HS is proposed

    Concrete Carbonation and Chloride Resistance Under Initial Hot Water Curing

    Get PDF
    Three concrete mix proportions were designed and prepared, respectively, such as fly ash concrete (abbreviated as “FAC”) with 30% fly ash replacement ratio of cement, fly ash, and slag concrete (abbreviated as “FSC”) with each of 20% fly ash and slag replacement ratio and ordinary Portland cement concrete (abbreviated as “OPC”) for the research of carbonation and chloride resistance of concrete under different initial hot water curing. Specimens with precuring were put into 20°C water tank for curing firstly until a certain compressive strength of 14 MPa reached after demolding, while specimens without precuring were put into 40, 60, and 80°C water tanks for curing directly just after demolding. Hot water curing of each specimen was finished when the designed compressive strength of 35 MPa was reached, then specimens were taken out into indoor natural environment. High concentration CO2 carbonation and Coulomb electric flux experiments were carried out at specimens’ 100-day age. Results show that with the addition of fly ash or slag, the carbonation resistance of concrete declines, whereas the resistance to chlorides is improved. With the increasing of initial water-curing temperature from 40 to 80°C, the carbonation and chloride resistance of OPC concrete all decrease, whereas for FAC and FSC concretes, the carbonation resistance declines and chloride resistance goes up. Precuring at the normal temperature before the elevated temperature water curing is beneficial for concrete long-term carbonation and chloride resistance

    En masse nascent transcription analysis to elucidate regulatory transcription factors

    Get PDF
    Despite exhaustively informing about steady-state mRNA abundance, DNA microarrays have been used with limited success to identify regulatory transcription factors (TFs). The main limitation of this approach is that altered mRNA stability also strongly governs the patterns of expressed genes. Here, we used nuclear run-on assays and microarrays to systematically interrogate changes in nascent transcription in cells treated with the topoisomerase inhibitor camptothecin (CPT). Analysis of the promoters of coordinately transcribed genes after CPT treatment suggested the involvement of TFs c-Myb and Rfx1. The predicted CPT-dependent associations were subsequently confirmed by chromatin immunoprecipitation assays. Importantly, after RNAi-mediated knockdown of each TF, the CPT-elicited induction of c-Myb- and/or Rfx1-regulated mRNAs was diminished and the overall cellular response was impaired. The strategies described here permit the successful identification of the TFs responsible for implementing adaptive gene expression programs in response to cellular stimulation

    Gene expression changes in the ventral hippocampus and medial prefrontal cortex of adolescent alcohol-preferring (P) rats following binge-like-alcohol drinking

    Get PDF
    Binge drinking of alcohol during adolescence is a serious public health concern with long-term consequences, including decreased hippocampal and prefrontal cortex volume and defects in memory. We used RNA sequencing to assess the effects of adolescent binge drinking on gene expression in these regions. Male adolescent alcohol-preferring (P) rats were exposed to repeated binge drinking (three 1-hour sessions/d during the dark/cycle, 5 days/week for 3 weeks starting at 28 days of age; ethanol intakes of 2.5 to 3 g/kg/session). Ethanol significantly altered the expression of 416 of 11,727 genes expressed in the ventral hippocampus. Genes and pathways involved in neurogenesis, long-term potentiation and axonal guidance were decreased, which could relate to the impaired memory function found in subjects with adolescent alcohol binge-like exposure. The decreased expression of myelin and cholesterol genes and apparent decrease in oligodendrocytes in P rats could result in decreased myelination. In the medial prefrontal cortex, 638 of 11,579 genes were altered; genes in cellular stress and inflammatory pathways were increased, as were genes involved in oxidative phosphorylation. Overall, the results of this study suggest that adolescent binge-like alcohol drinking may alter the development of the ventral hippocampus and medial prefrontal cortex and produce long-term consequences on learning and memory, and on control of impulsive behaviors

    Gene expression changes in serotonin, GABA-A receptors, neuropeptides and ion channels in the dorsal raphe nucleus of adolescent alcohol-preferring (P) rats following binge-like alcohol drinking

    Get PDF
    Alcohol binge-drinking during adolescence is a serious public health concern with long-term consequences. We used RNA sequencing to assess the effects of excessive adolescent ethanol binge-drinking on gene expression in the dorsal raphe nucleus (DRN) of alcohol preferring (P) rats. Repeated binges across adolescence (three 1h sessions across the dark-cycle per day, 5 days per week for 3 weeks starting at 28 days of age; ethanol intakes of 2.5-3 g/kg/session) significantly altered the expression of approximately one-third of the detected genes. Multiple neurotransmitter systems were altered, with the largest changes in the serotonin system (21 of 23 serotonin-related genes showed decreased expression) and GABA-A receptors (8 decreased and 2 increased). Multiple neuropeptide systems were also altered, with changes in the neuropeptide Y and corticotropin-releasing hormone systems similar to those associated with increased drinking and decreased resistance to stress. There was increased expression of 21 of 32 genes for potassium channels. Expression of downstream targets of CREB signaling was increased. There were also changes in expression of genes involved in inflammatory processes, axonal guidance, growth factors, transcription factors, and several intracellular signaling pathways. These widespread changes indicate that excessive binge drinking during adolescence alters the functioning of the DRN and likely its modulation of many regions of the central nervous system, including the mesocorticolimbic system

    Gene expression changes in glutamate and GABA-A receptors, neuropeptides, ion channels and cholesterol synthesis in the periaqueductal gray following binge-like alcohol drinking by adolescent alcohol-preferring (P) rats

    Get PDF
    BACKGROUND: Binge drinking of alcohol during adolescence is a serious public health concern with long-term consequences, including increased pain, fear, and anxiety. The periaqueductal gray (PAG) is involved in processing pain, fear, and anxiety. The effects of adolescent binge drinking on gene expression in this region have yet to be studied. METHODS: Male adolescent alcohol-preferring (P) rats were exposed to repeated binge drinking (three 1-hour sessions/d during the dark/cycle, 5 days/wk for 3 weeks starting at 28 days of age; ethanol intakes of 2.5 to 3 g/kg/session). We used RNA sequencing to assess the effects of ethanol intake on gene expression. RESULTS: Ethanol significantly altered the expression of 1,670 of the 12,123 detected genes: 877 (53%) decreased. In the glutamate system, 23 genes were found to be altered, including reduction in 7 of 10 genes for metabotropic and NMDA receptors. Subunit changes in the NMDA receptor may make it less sensitive to ethanol. Changes in GABAA genes would most likely increase the ability of the PAG to produce tonic inhibition. Five serotonin receptor genes, 6 acetylcholine receptor genes, and 4 glycine receptor genes showed decreased expression in the alcohol-drinking rats. Opioid genes (e.g., Oprk1, Oprm1) and genes for neuropeptides linked to anxiety and panic behaviors (e.g., Npy1r) had mostly decreased expression. Genes for 27 potassium, 10 sodium, and 5 calcium ion channels were found to be differentially expressed. Nine genes in the cholesterol synthesis pathway had decreased expression, including Hmgcr, encoding the rate-limiting enzyme. Genes involved in the production of myelin also had decreased expression. CONCLUSIONS: The results demonstrate that binge alcohol drinking during adolescence produces developmental changes in the expression of key genes within the PAG; many of these changes point to increased susceptibility to pain, fear, and anxiety, which could contribute to excessive drinking to relieve these negative effects

    Common Supplements Found To Lower Circulating Inflammation Levels

    Get PDF
    Glucosamine and chondroitin are popular non-vitamin dietary supplements used for osteoarthritis. Long-term use is associated with lower incidence of colorectal and lung cancers and with lower mortality; however, the mechanism underlying these observations is unknown. In vitro and animal studies show that glucosamine and chondroitin inhibit NF-kB, a central mediator of inflammation, but no definitive trials have been done in healthy humans.We conducted a randomized, double-blind, placebo-controlled, cross-over study to assess the effects of glucosamine hydrochloride (1500 mg/d) plus chondroitin sulfate (1200 mg/d) for 28 days compared to placebo in 18 (9 men, 9 women) healthy, overweight (body mass index 25.0-32.5 kg/m2) adults, aged 20-55 y. We examined 4 serum inflammatory biomarkers: C-reactive protein (CRP), interleukin 6, and soluble tumor necrosis factor receptors I and II; a urinary inflammation biomarker: prostaglandin E2-metabolite; and a urinary oxidative stress biomarker: F2-isoprostane. Plasma proteomics on an antibody array was performed to explore other pathways modulated by glucosamine and chondroitin.Serum CRP concentrations were 23% lower after glucosamine and chondroitin compared to placebo (P = 0.048). There were no significant differences in other biomarkers. In the proteomics analyses, several pathways were significantly different between the interventions after Bonferroni correction, the most significant being a reduction in the "cytokine activity" pathway (P = 2.6 x 10-16), after glucosamine and chondroitin compared to placebo.Glucosamine and chondroitin supplementation may lower systemic inflammation and alter other pathways in healthy, overweight individuals. This study adds evidence for potential mechanisms supporting epidemiologic findings that glucosamine and chondroitin are associated with reduced risk of lung and colorectal cancer.ClinicalTrials.gov NCT01682694
    corecore