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Abstract

Background—Binge-drinking of alcohol during adolescence is a serious public health concern 

with long-term consequences, including increased pain, fear and anxiety. The periaqueductal gray 

(PAG) is involved in processing pain, fear and anxiety. The effects of adolescent binge drinking on 

gene expression in this region have yet to be studied.

Methods—Male adolescent P (alcohol preferring) rats were exposed to repeated binge-drinking 

(three 1-h sessions/day during the dark-cycle, 5 days/week for 3 weeks starting at 28 days of age; 

ethanol intakes of 2.5 – 3 g/kg/session). We used RNA sequencing to assess the effects of ethanol 

intake on gene expression.

Results—Ethanol significantly altered expression of 1670 of the 12,123 detected genes: 877 

(53%) decreased. In the glutamate system, 23 genes were altered, including reduction in 7 of 10 

genes for metabotropic and NMDA receptors. Subunit changes in the NMDA receptor may make 

it less sensitive to ethanol. Changes in GABAA genes would most likely increase the ability of the 

PAG to produce tonic inhibition. Five serotonin receptor genes, 6 acetylcholine receptor genes and 

4 glycine receptor genes showed decreased expression in the alcohol drinking rats. Opioid genes 

(e.g., Oprk1, Oprm1) and genes for neuropeptides linked to anxiety and panic behaviors (e.g., 

Npy1r) had mostly decreased expression. Genes for 27 potassium, 10 sodium and 5 calcium ion 

channels were differentially expressed. Nine genes in the cholesterol synthesis pathway had 

*Corresponding author: Howard J. Edenberg, edenberg@iu.edu, Tel: +1-317-274-2353, Fax: +1-317-274-4686. 

Conflict of Interests
No conflicts of interests.

HHS Public Access
Author manuscript
Alcohol Clin Exp Res. Author manuscript; available in PMC 2017 May 01.

Published in final edited form as:
Alcohol Clin Exp Res. 2016 May ; 40(5): 955–968. doi:10.1111/acer.13056.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



decreased expression, including Hmgcr, encoding the rate limiting enzyme. Genes involved in the 

production of myelin also had decreased expression.

Conclusion—The results demonstrate that binge-alcohol drinking during adolescence produces 

developmental changes in the expression of key genes within the PAG; many of these changes 

point to increased susceptibility to pain, fear and anxiety, which could contribute to excessive 

drinking to relieve these negative effects.
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INTRODUCTION

Alcohol (ethanol) consumption by adolescents and young adults continues to be a problem. 

A multi-national study estimated that between 20% and 40% of adolescents have engaged in 

binge drinking (Marshall, 2014), defined by NIAAA as “a pattern of drinking that brings 

blood alcohol concentration (BAC) levels to 0.08 g/dL.” Early age of first use and binge 

drinking both predict increased risk for alcohol use disorders in adulthood (reviewed in 

Spear, 2015). Extreme binge drinking is of particular concern, with 10.5% of 12th graders 

reporting consumption of 10 or more drinks on one occasion (Spear, 2015). Two-thirds of 

the alcohol consumed by college students is consumed by the 20% of them who are frequent 

binge drinkers (Spear, 2015). A review by Jacobus and Tapert (2013) reports differences in 

gray and white matter in adolescents exposed to alcohol; white matter volume decreases and 

integrity is poorer in cortical and subcortical projections. Neurocognitive performance is 

poorer, with impaired attention, executive functions and memory (Jacobus and Tapert, 2013).

Binge-like behavior has been observed in selectively bred alcohol preferring (P) rats, with 

adults and peri-adolescents of both sexes readily achieving blood ethanol levels ≥ 80 mg% 

(Bell et al., 2011, Bell, et al., 2014). Intermittent access to ethanol using multiple scheduled 

access protocols enhances this binge-like drinking (Bell, et al., 2014). Peri-adolescent 

selectively bred rats consume more alcohol than their adult counterparts (Bell et al., 2014). 

A study of adult and adolescent P rats using a multiple scheduled access protocol reported 

that adult male rats drank 1.5–2.5 g/kg per session while adolescent males consumed an 

average of 2.7 g/kg, achieving blood ethanol levels of 80 mg% and 100 mg% respectively 

(Bell et al., 2011). At comparable blood alcohol levels, both human and animal adolescents 

show less sedation and better motor coordination than adults, and the rewarding and 

reinforcing properties of alcohol are higher in adolescents (Bell et al., 2014, Spear 2015).

The effects of adolescent binge-like alcohol exposure on several brain regions have been 

studied. There was reduced basal α-MSH immune-reactivity in the central nucleus of the 

amygdala (CeA; Lerma-Cabrera et al., 2013). Binge-like ethanol administration to 

adolescent rats led to lower c-fos immune-reactivity in the nucleus accumbens (Alaux-

Cantin et al., 2013). Binge-like alcohol drinking by adolescent P rats led to many changes 

within the extended amygdala (McBride et al., 2014) and in the dorsal raphe nucleus (DRN) 

(McClintick et al., 2015). In the DRN, the serotonin system was most significantly altered 

with decreased expression in receptors, transporters, and enzymes that synthesize serotonin 
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(McClintick et al., 2015). GABAA receptors were also decreased in the DRN, as were many 

genes in neuropeptide systems (McClintick et al., 2015). Both the extended amygdala and 

DRN showed changes in cAMP and protein kinase A signaling. Receptors for NPY were 

increased in the extended amygdala but decreased in the DRN (McBride et al., 2014, 

McClintick et al., 2015).

The PAG plays important roles in the processing of pain, fear and anxiety (reviewed in 

Behbehani, 1995). Anxiety and fear are commonly associated with alcohol withdrawal 

(Pandey et al., 2015, Koob, 2013). Animals exposed to ethanol during adolescence were, as 

adults, more anxious and drank more than the animals not previously exposed to ethanol 

(Pandey et al., 2015). Furthermore, the PAG receives significant serotonergic innervation 

from the DRN involved in fight-or-flight behavioral responses (Johnson et al., 2004). Li et 

al. (2013) reported that acute ethanol produced a robust enhancement of glutamatergic 

synaptic transmission in the PAG. GABAA and μ opioid receptors (Silva and Nobre, 2014) 

and glutamate receptors (Ezequiel Leite and Nobre, 2012; Long et al., 2007) within the PAG 

are affected in ethanol withdrawal. Microinjection of NMDA or AMPA antagonists into the 

PAG reduced ethanol intake during withdrawal (Ezequiel Leite and Nobre, 2012). In 

addition, there may be an association between chronic pain and alcohol dependence, 

suggesting overlapping neural mechanisms (Apkarian et al., 2013). But thus far, the global 

effects of ethanol on changes in gene expression within the PAG have not been studied.

Alcohol dependence is a relapsing disorder that has been conceptualized as three stages, 

binge/intoxication, withdrawal/negative affect and preoccupation/anticipation (Koob, 2013). 

Increasingly, the negative consequences of not drinking rather than the rewarding or positive 

aspects of drinking are responsible for relapses. The PAG is associated with anxiety, fear and 

pain (Bebehani, 1995). Therefore, we examined the PAG gene expression profile in binge-

drinking male adolescent P rats to identify developmental changes in the PAG that could 

play a role in the transition from positive to negative reinforcement as the motivator for 

drinking.

MATERIALS AND METHODS

Ethanol exposure and RNA extraction

Adolescent male P (alcohol preferring) rats were allowed to binge drink as described 

previously (McBride et al., 2014). Gene expression changes have been reported in 3 regions 

of these same rats: accumbens shell, central core of the amygdala (McBride et al., 2014) and 

dorsal raphe (McClintick et al. 2015). Briefly, starting at 28 days of age, 11 male P rats were 

given ad libitum access to food and water, and access to ethanol (15 and 30% ethanol 

solutions concurrently) in 3 × 1 h sessions per day for 5 consecutive days/week, while 10 

control animals were treated identically except without access to ethanol. This free-choice 

multiple-scheduled-access to ethanol procedure (Bell et al., 2014, Bell et al., 2011) resulted 

in average daily ethanol intakes of approximately 8 g/kg/day, with intakes of 2–3 g/kg for 

each of the 3 daily 1 h sessions (McBride et al., 2014). These levels of intake lead to BAC of 

100 mg% (Bell et al., 2011), and therefore meet the criterion for binge-drinking put forth by 

the National Institute on Alcohol Abuse and Alcoholism (NIAAA, 2004). The rats were 

sacrificed at 49 days of age, 3 h after the 1st access session on their 15th day of drinking. All 
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research protocols were approved by the Indiana University School of Medicine Institutional 

Animal Care and Use Committee and are in accordance with the guidelines of the 

Institutional Care and Use Committee of the National Institute on Drug Abuse, National 

Institutes of Health, and the Guide for the Care and Use of Laboratory Animals (Institute of 

Laboratory Animal Resources, Commission on Life Sciences, National Research Council 

1996).

Brains were rapidly extracted and flash-frozen in isopentane in dry ice and stored at −80 C 

until sectioning. Brains were sectioned (300 μm) and the PAG was micropunched from 6.04 

mm to 7.30 mm post bregma, using procedures previously described (McBride et al., 2014). 

Other brain regions of these animals have been studied (McBride et al., 2014, McClintick et 

al., 2015). The yield, concentration and purity of the RNA were measured by Nanodrop 

(Thermo Fisher Scientific, Waltham, MA) spectrum from 220 nm to 340 nm. Quality was 

further assessed by Agilent Bioanalyzer (Agilent Technologies, Santa Clara, Ca); RNA 

integrity numbers (RIN) averaged 8.4 for the samples.

RNA sequencing and analysis

RNA sequencing and analysis were carried out as previously reported (McClintick et al., 

2015). We first used SOLiD™ Instrument Control Software and SOLiD™ Experiment 

Tracking System Software for the read quality recalibration. Sequences containing more 

than two ‘N’ were discarded. If a 5 base sliding window had an average quality score less 

than 20, the read was truncated at the beginning of that 5-base window. Reads with fewer 

than 35 bases were discarded. Reads that passed these filters were mapped to the rat genome 

(rn4) using the BFAST algorithm (Homer et al., 2009). We used a Tophat-like strategy 

(Trapnell et al., 2009) to align the sequencing reads on both exonic regions and across 

junctions. The expression levels of each isoform were counted using NGSUtils (Breese and 

Liu, 2013), normalized to the total number of sequencing reads falling into annotated gene 

regions in each sample, and further scaled based on a trimmed mean of log transformed 

counts per million (CPM) value to correct for the variability of RNA composition in each 

sample (Robinson and Oshlack, 2010). The scaled CPM was used as gene level 

quantification in each sample. We used the edgeR package to identify the genes that are 

differentially expressed between alcohol drinking and water groups (Robinson et al., 2010). 

FDR was calculated according to Benjamini and Hochberg (1995). RPKM (Reads per 

Kilobase per Million Reads), which adjusts expression relative to transcript length, is 

reported in the tables and supplemental tables.

Qiagen Ingenuity Pathway Analysis (IPA) was performed on the genes significant at FDR ≤ 

0.05. Pathways that contained fewer than 5 differentially expressed genes were dropped. 

Pathways with the same list of genes were collapsed (e.g. multiple cholesterol synthesis 

pathways).
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RESULTS

Differential gene expression

We used RNA sequencing to examine changes in gene expression in the periaqueductal gray 

(PAG) of adolescent male P rats that had consumed high levels of ethanol in a repeated 

binge-drinking pattern over a 3-week period (post-natal days 28 to day 49). The average 

consumption was approximately 8 g/kg per day for the 5 drinking days of each week, with 

average intakes of 2–3 g/kg in each 1 h session (McBride et al., 2014). Although blood 

alcohol levels were not measured in these animals, similarly treated adolescent animals 

reached blood alcohol levels of 100 mg% at the end of a 1 h session (Bell et al., 2011). 

There were 12,123 genes detectably expressed, of which 1,670 genes (14%) were 

differentially expressed between ethanol exposed and control animals; 877 (53%) were 

decreased (at FDR ≤ 0.05; Supplementary Table 1). Among the differentially expressed 

genes, 815 (49%) had absolute fold changes >1.5; 51% of genes with > 1.5 fold changes 

were decreased.

Genes encoding receptor subunits and transporters for several neurotransmitters were 

differentially expressed (Table 1). The glutamate system had the largest number of genes 

with altered expression, with nearly equal numbers increased and decreased. Three of the 

four NMDA receptor subunits and four of the 6 metabotropic receptors had decreased 

expression with alcohol drinking. Expression of the vesicular transporter gene Slc17a6 
(encoding VGLUT2) was decreased, whereas Slc17a7 (encoding VGLUT1) was increased. 

Two glutamate reuptake transporters, Slc1a3 (astrocytes) and Slc1a6 (neuronal), had 

increased expression in the alcohol group, while another astrocyte-associated transporter, 

Slc1a2, had decreased expression.

Most GABAA receptor subunit genes (6 of 8) showed decreased expression in the alcohol 

group, but Gabra6, which is expressed more highly than other GABAA subunits in this 

tissue, showed increased expression. The 5 serotonin-related genes that were differentially 

expressed all had reduced expression. Similarly, all 6 differentially expressed acetylcholine 

receptor-related genes and all 4 of the glycine receptor-related genes had reduced expression 

in the drinking animals. Expression of dopamine receptors Drd2 and Drd5 was decreased in 

the alcohol drinking group. One highly expressed adenosine receptor (Adora1) was 

increased 1.4-fold. Four purinergic receptors also had altered gene expression.

Expression of genes for some neuropeptides and their receptors was altered (Table 2); most 

(17/21) were expressed at lower levels after repeated binge drinking. The five genes in the 

opioid system, the 2 NPY receptors and the 2 galanin receptors that were altered by drinking 

all had decreased expression. The hypocretin (orexin) neuropeptide precursor (Hcrt) had 

increased expression but its receptor Hcrtr2 had reduced expression. The tachykinin 

precursor gene (Tac1) and the Tacr1 receptor had decreased expression, while Tacr3 had 

increased expression. Two of the 3 somatostatin receptor genes had decreased expression, 

whereas Sstr3 had increased expression.

Many ion channel genes were differentially expressed (Table 3). Among the K+-channels 

that were differentially expressed, 11 of 15 K+ voltage-gated channels had reduced 
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expression in the drinking group. In contrast, 3 of 4 K+-inward rectifying channels had 

increased expression. Among the differentially expressed Na+-channels, 6 of 8 voltage-gated 

channels had reduced gene expression. The two voltage-dependent calcium channels 

expressed at highest levels (Cacna1a, Cacna1g) were both increased, while 3 expressed at 

lower levels were decreased. Both intracellular chloride channels that were differentially 

expressed were increased.

Nine genes in the cholesterol synthesis pathway (Table 4) had decreased expression in the 

binge drinking animals including the rate limiting enzyme for cholesterol production, Hmgcr 
(3-hydroxy-3-methylglutaryl-CoA synthase 1; down 1.5 fold). Many genes involved in 

myelin production were decreased by 1.3 to 1.8 fold (Table 4).

Pathway Analysis

Qiagen Ingenuity pathway analysis (IPA) was performed using the 1,670 differentially 

expressed genes. IPA Pathway analysis showed 143 pathways with FDR ≤ 0.05 

(Supplemental Table 2). Many of these pathways were not independent: 23 genes (mostly 

kinases and other signaling molecules) were found in between 25 and 87 of the pathways, 

and 119 of the pathways contained at least 5 of these genes. There is a cluster of PI3 kinases 

(Pik3r2, Pik3r3 and Pik3c2g) that are found in 86–87 of the pathways. Three protein kinase 

C genes (Prkcd, Prkcg and Prkar2b) are found in 42–58 pathways, some overlapping with 

the PI3 kinase-containing pathways. Other groups of genes with disproportionate impact are 

adenylate cyclases (Adcy1, Adcy10, Adcy7) and G protein subunits that can be coupled to 

many different G-protein coupled receptors (Gng7, Gnb3, Gng13, Gnas).

Upstream regulator analysis identified 201 putative upstream regulators that could contribute 

to the observed changes in gene expression (Supplemental Table 3). Glucagon, glutamate, 

somatostatin and norepinephrine are identified as active, as were ILR1, IL17A, IL2 and LPS. 

Also noted as possible activators are CREBBP/CREM and protein kinases A and C. PPAR α 

and γ, HDAC4, mifepristone, cannabinol, morphine, taurine, testosterone, RXR, PXR, 

Insulin receptor, and steroid regulatory binding proteins Srebf1 and Srebf2 all appear to 

show reduced activity. Many circulating molecules and drugs are predicted to be active (e.g. 

have effects similar to those found after ethanol) or to be inactive (and potentially oppose 

those effects) (Table 5).

DISCUSSION

The PAG plays a role in processing fear and anxiety, which are characteristic of alcohol 

withdrawal (Bebehani et al., 1995). We examined the effect of repeated binge drinking of 

ethanol during adolescence on gene expression profiles in the periaqueductal gray (PAG). 

Adolescent P rats consumed quantities of ethanol that are known to result in BACs of 100 

mg% (McBride et al., 2014). Of the detectably expressed genes, 14% were differentially 

expressed 3 hours after the last drinking episode. These results demonstrate that repeated 

binge drinking has a significant effect on the function of the PAG.

Gene expression in other brain regions of these same animals has previously been studied 

(McBride et al, 2014; McClintick et al., 2015). In the dorsal raphe nucleus (DRN), 12,047 
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genes were detected, of which 3567 (30%) were differentially expressed; 1648 (46%) of 

these had decreased expression (McClintick et al., 2015). The PAG and DRN had 1280 

differentially expressed genes in common with same direction of change (Supplemental 

Table 1). Although technical differences greatly affect the comparisons, microarray studies 

showed 182 named genes differentially expressed in central amygdala and 154 in the 

accumbens shell of these same animals (McBride et al., 2014). Only 4 genes were 

differentially expressed in the same direction (all increased) in all 4 of these regions: Cyr61 
(cysteine-Rich, angiogenic inducer, 61), Dusp1 (dual specificity phosphatase 1), Ier2 
(immediate early response 2) and Kif15 (kinesin family member 15).

Neurotransmitters

The glutamate signaling system was broadly affected, with trends similar to those seen in the 

DRN (McClintick et al., 2015). The overall effect suggests a change in the composition of 

the glutamate receptors rather than a major reduction in receptor numbers. There are 

offsetting changes in expression for type I metabotropic receptors (Grm1 and Grm5). Grm1 

and Grm5 have downstream effects on phosphoinositide 3-kinase (PI3K). In the PAG, three 

PI3K associated genes were increased by binge drinking (Pik3c2g, Pik3r2, Pik3r3), along 

with Akt2. These genes are associated with numerous pathways that were identified by the 

IPA analysis. Cozzoli et al. (2016) found that male adolescent mice exposed to binge 

drinking had decreased PI3K activity in the nucleus accumbens; the difference in direction 

could be related to either brain region or species differences. Among the type III 

metabotropic receptors (Grm4, Grm7 and Grm8), which are generally pre-synaptic, the 

increase in the highly expressed Grm4 could offset the decreased expression of Grm7 and 

Grm8 in terms of total receptor number.

For NMDA receptors, again the changes are offsetting: Grin2c is the most highly expressed 

NMDAR2 receptor and was the only NMDA subunit with increased expression; Grin2b, 

Grin2d and Grin3a had decreased expression. Alcohol acts as an allosteric modulator of 

NMDA receptors, and can decrease glutamate signaling by decreasing the mean open time 

of the channel. Grin1, Grin2a and Grin2b all contain ethanol-sensitive domains (Zhao et al., 

2015), but of these only Grin2b expression was decreased. Replacing Grin2b subunits by 

Grin2c subunits could result in NMDA receptors that are less sensitive to ethanol. Gria4, the 

most highly expressed AMPA receptor, was increased 1.4 fold and Grid2 was increased 1.7-

fold in the PAG; these were the only 2 glutamate receptors with no offsetting changes in 

other subunits of the same class. AMPA receptors are also inhibited by ethanol (Wirkner et 

al., 2000), so the increase in Gria4 may be compensatory.

Overall GABA transmission may be reduced because the upstream regulator analysis (Table 

5) identified bicuculine, a GABAA antagonist, as being capable of producing some of the 

changes seen with ethanol. Changes in GABAA subunit expression may therefore be 

compensatory for this loss. One of the main aspects of GABAA receptors in the PAG is tonic 

inhibition (Behbehani, 1995). GABAA receptors composed of Gabrd along with the α4 or 

α6 subunit are primarily found extrasynaptically (Lovinger and Roberto, 2013); these 

receptors generate tonic inhibitory conductance (Hanchar et al., 2005). These extra synaptic 

receptors are sensitive to ethanol, which potentiates this tonic current in a protein kinase C 
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delta dependent manner (Lovinger and Roberto, 2013). Given this potentiation, it is notable 

that Gabrd and Gabra6, both highly expressed, were both increased along with Prkcd. The 

most highly expressed GABA transporter (Slc6a11, GAT2) was decreased, which could 

leave more GABA in extracellular spaces, where it could activate phasic or tonic GABA 

conductance. Three of the genes downstream of bicuculine (Ier2, Cyr61 and Dusp1) were 

increased in the other 3 brain regions studied (McBride et al., 2014, McClintick et al., 2015).

Glycine receptors are ligand gated ion channels, which, when activated, reduce firing. 

Ethanol is a positive allosteric modulator of the glycine receptor (Farley and Mihic, 2015). 

Four subunits, α1, α2, α3 and β, had decreased expression, which may compensate for the 

positive modulation by ethanol. Glrb (encoding the gly-B receptor) is the most abundantly 

expressed glycine receptor in the PAG, and has been implicated in hypo-nociception 

(Martins et al., 2008), thus the reduction in this receptor could increase nociception. 

Expression of the glycine reuptake transporter gene, Slc6a5, was also decreased, which may 

moderate the effect.

Receptor subunits for 3 other neurotransmitter systems, dopamine, acetylcholine and 

serotonin, all had reduced gene expression. Acetylcholine injected into the ventral lateral 

PAG causes hypotension (Delindo, et al., 2010), indicating that acetylcholine signaling can 

limit physiological changes associated with anxiety and stress. Genes for serotonin signaling 

were also largely decreased in the DRN of adolescent alcohol drinking P rats (McClintick et 

al., 2015). Release of serotonin in the dorsal lateral PAG inhibits stress induced sympathetic 

activity via the Htr1a receptor (Johnson et al., 2004), which was decreased −1.5 fold in these 

binge drinking animals. Adra1a, an alpha-adrenergic receptor subunit gene, also had 

decreased expression. Since norepinephrine injected into the PAG has an anxiolytic effect 

(Pelosi, et al., 2009) the decrease in Adra1a could make these animals more prone to anxiety 

in stressful situations.

The highly expressed adenosine receptor Adora1 had 1.4-fold increased expression. Ethanol 

has been shown to increase the expression of the α1 adenosine receptor, especially after 

multiple withdrawal periods (Butler and Prendergast, 2012). Ethanol also increases 

extracellular adenosine (Butler and Prendergast, 2012). Adora1 is linked to Gi/o proteins, 

which inhibit adenylate cyclase, and thus decrease cAMP production. Adenosine may be 

responsible for some of the sedating/sleep inducing effects of ethanol (Butler and 

Prendergast, 2012). P2RX type purinergic receptors had mixed changes but the overall effect 

was increased expression for these receptors.

Nitric oxide (NO) in the PAG is involved in anxiety like behaviors. NO scavengers and 

antagonists of neuronal nitric oxide synthase (Nos1) injected into the PAG have been shown 

to reduce anxiogenic effects of alcohol withdrawal in rats (Bonassoli et al., 2012). Nos1 
increased 1.75 fold in the PAG. Nitric oxide works by increasing the production of the 

second messenger cGMP (Meyer and Queszner, 2013). Phosphodiesterase 5A (Pde5a), 

which breaks down cGMP, was up 1.75 fold. The drug sildenafil, a Pde5a inhibitor (Table 5), 

could reverse some of the effects.
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Neuropeptides

OPRK1, PDYN and OPRM1 have been associated with alcohol use disorders (Edenberg et 

al., 2008, Schwantes-An et al., 2015, Xuei et al., 2006). Opioid receptors Oprk1 (κ), Oprm1 

(μ) and the nociception receptor Oprl1 as well as the prodynorphin gene all had decreased 

expression (Table 2). These results suggest an increase in pain processing and a reduction in 

the effectiveness of opioid agonists such as morphine to treat pain. Morphine which can also 

have anxiolytic effects, has no effect on alcohol withdrawn animals (Silva and Nobre, 2014).

Stimulation of the dorsal PAG evokes defensive behavior and physiological responses 

(tachycardia and increased blood pressure) (Paul et al., 2014). Cholecystokinin peptide 

CCK-4 can enhance this response (Paul et al., 2014). Both the cholecystokinin precursor 

(Cck) and the Cck B receptor (Cckbr) had decreased expression, suggesting reduced 

autonomic response to threat. Decreased expression of two NPY receptors, Npy5r and 

Npy1r could increase anxiety-like behavior.

The tachykinin 3 receptor has been reported to be associated with alcohol and cocaine 

dependence (Foroud et al., 2008). Tacr3 expression was increased in the binge drinking 

animals. The tachykinin receptor Tacr1 had decreased expression, as did Tac1, the precursor 

for its ligand, Substance P. Substance P is associated with anxiety, stress and addiction 

(Schank et al., 2014). Antagonists of Tacr1 have been shown to decrease escalated drinking 

in P rats but not in Wistar rats (Schank et al., 2013). Tacr1 is more highly expressed in the 

accumbens shell (McBride et. al, 2013b) and CeA (Schank et al., 2014) of naïve P rats 

compared to NP or Wistar rats. The decrease in both Tac1 and Tacr1 could result in 

decreased anxiety and response to stress in the drinking animals.

Three of the genes for the somatostatin family of receptors were altered: Sstr1 (−1.7), Sstr3 
(+1.5) and Sstr4 (−1.4). Somatostatin is decreased in several neuropsychiatric disorders, 

including major depressive disorder, schizophrenia and bipolar disorder (Lin and Sibille, 

2013). Activation of somatostatin receptors generally opposes stress related behaviors 

including anxiety and autonomic effects (Stengel et al., 2013). Activation of Sstr1 mediates 

the blocking of stress induced colonic stimulation (Lin and Sibille, 2013). The reduction in 

gene expression for 2 of the 3 Sst receptors could also contribute to potentially higher levels 

of response to stress in adolescent binge drinking rats. The higher expression levels of Crhr1 
in the PAG of the binge drinking rats may also predict a higher level of stress reactivity.

Overall, the results with the neuropeptides suggest that repeated binge-like alcohol drinking 

in these adolescent rats resulted in alterations in the expression of genes within the PAG that 

could increase anxiety and reactivity to stress.

Ion Channels

Voltage gated sodium channels are made up of α and β subunits. The β subunits are 

multifunctional and can modulate gating, voltage dependence and the kinetics of the α 

subunits, which form the pore. There is an overall decrease in α subunit expression and an 

increase in β subunit expression; the reduction in α subunit expression suggests reduced 

neuronal excitability.
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Twenty-seven potassium channels had altered expression. Three of four inwardly-rectifying 

channels had increased expression. Eleven of 15 voltage-gated channels had decreased 

expression, which may indicate altered thresholds for neuronal excitability, although the 

most highly expressed channel, Kcnd2, was increased. Although 3 of 5 voltage gated 

calcium channel genes had decreased expression, two channels that were more highly 

expressed had increased expression, so the total effect may have been a net increase in 

voltage gated calcium channel activity. This possible increase is mirrored in the upstream 

analysis (Supplemental Table 3), which suggests that calcium signaling could be more active 

in the alcohol group.

Decreased cholesterol and myelin synthesis

Cholesterol synthesis pathways in the PAG (and also in the DRN; McClintick et al., 2015) 

were altered by binge drinking (Table 4), with many genes having decreased expression. 

Hmgcr (3-hydroxy-3-methylglutaryl-CoA synthase 1, down 1.5-fold), catalyzes the rate 

limiting step for cholesterol production. Eight additional genes in the cholesterol pathway 

expression decreased by 1.3 to 1.5 fold. Alcohol consumption by P rats also decreased 

expression of cholesterol synthesis genes in the liver (Klein et al., 2014). Cholesterol is 

important for brain function, playing a major role in synaptogenesis, membranes, synaptic 

vesicles and myelin sheaths; 70–80% of the cholesterol in the brain is in the myelin sheaths. 

Since cholesterol cannot cross the blood-brain barrier, all cholesterol in the brain is 

synthesized there (Zhang and Liu, 2015). Cholesterol production peaks during development 

when myelination is heaviest. Cholesterol levels are tightly regulated, and levels are sensed 

by the sterol regulatory-element binding proteins (Srebp); the upstream regulator analysis 

indicates that Srebp and insulin signaling (which can also control expression of genes for 

cholesterol synthesis, uptake and transport) appear to be reduced. Decreases in brain 

cholesterol can have deleterious effects. Lovastatin applied to primary hippocampus 

neurons, leading to decreases in cholesterol, impaired synaptic vesicle release and decreased 

neurite growth (Mailman et al., 2011).

The binge drinking animals also had decreased expression of genes involved in myelin 

formation, which has been noted in other tissues (Lewohl et al., 2000, Mayfield et al., 2002, 

McClintick et al., 2013, Sokolov et al., 2003, and in pre-clinical models of adolescent binge 

drinking (Vargas et al., 2014). Decreased myelination and poorer myelin integrity have also 

been found in adolescents with extensive alcohol use (Jacobus and Tapert, 2013). Decreased 

myelination during adolescent development could have a major impact on brain function. It 

is unknown whether decreased cholesterol production is the cause of decreased myelination 

in the brains of alcoholics but Hmgcs1 and Hmgcr in the biosynthetic pathway also had 

decreased expression in the hippocampus of alcoholics, who also had decreased expression 

of myelin forming genes (McClintick et al., 2013). Expression of both myelin-related genes 

and Hmgcr is decreased in post-mortem studies of frontal and motor cortex and temporal 

cortex (Mayfield et al., 2002; Sokolov, et al., 2003). Hmgcr, Hmgcs1, Dhcr7 and Sqle all had 

decreased expression in the VTA of binge drinking adult female P rats (McBride et al., 

2013a).
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Potential alterations in cellular composition of the PAG

Cahoy et al. (2008) identified genes enriched in different cell types that could serve as 

characteristic markers of those cells. We examined the differentially expressed genes for 

evidence of patterns that might reflect a change in relative numbers of several cell types in 

the PAG of these animals. Genes that are characteristic of neurons and astrocytes (Cahoy et 

al., 2008) showed a similar ratio of over- and under-expression as the full set of genes, close 

to 50%, indicating that there was no substantial change in the contribution of those cells to 

the PAG. But of the genes characteristic of oligodendrocytes, 80% were decreased, 

suggesting a decrease in the number and/or function of oligodendrocytes as a result of the 

alcohol exposure.

Drugs that may reverse transcriptional effects of alcohol

The upstream analysis performed with IPA looks for endogenous genes and molecules that 

could be responsible for the alterations in gene expression, and also for drugs that could 

have similar or opposing effects. Negative z-scores in Supplementary Table 3 mean that the 

molecule causes expression of the subset of genes it regulates to go in the opposite direction 

to those caused by the ethanol exposure. The drugs that have negative z-scores (Table 5) 

might, therefore, reverse some of the effects of this repeated high level of alcohol exposure. 

Many of these are drugs already have FDA approval for another indication. One of them, 

mifepristone, is in early clinical trials (Vendruscolo et al., 2015); early indications are that it 

may decrease alcohol seeking in alcohol dependent individuals. PPARα agonists (fibrates 

and thiozolidinediones) have already been used in pre-clinical studies and shown to reduce 

ethanol intake in mice (Blednov et al., 2015). Isoquercitrin, which is found in medicinal 

herbs like St. John’s Wort, appears to increase the expression of many genes in the 

cholesterol pathway (Soundararajan et al., 2008) that were decreased by ethanol exposure 

(Table 4). Taurine, which is found in many energy drinks, is a glycine receptor agonist. The 

FDA has warned that mixing of those energy drinks with alcohol should be avoided because 

it is associated with higher levels of alcohol consumption, especially in adolescents and 

young adults (Food and Drug Administration, 2010); this might be in part because it reduces 

the negative effects of alcohol. The upstream regulator analysis also indicates that 

norepinephrine is active; two drugs that block α1 adrenergic receptors, prazosin and 

doxazosin, are in randomized trials for alcohol dependence and alcohol dependence plus 

PTSD (Kenna et al., 2015; Simpson et al., 2015). The positive score for morphine (Table 5) 

indicates that an opioid antagaonist like Naltrexone may be effective in countering some of 

the effects of the excessive drinking.

Conclusions

We have shown that gene expression in the PAG is strongly affected by binge drinking in 

adolescent rats, including alterations in the composition of NMDA, AMPA and GABAA 

receptors. Many serotonin, glycine and acetylcholine receptors had decreased expression 

after adolescent binge drinking, as did many neuropeptides and their receptors including the 

opioid systems and receptors that are linked to anxiety and panic behavior. Taken together, 

these changes in the development of these transmitter systems suggest increased 

susceptibility to stress and anxiety, which could increase relapse drinking to relieve these 
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symptoms (the “dark side” of addiction – Koob, 2013). Genes for cholesterol production had 

reduced expression, as were genes involved with myelination, which could have lasting 

effects on the connectivity between brain regions. The overall pattern of altered gene 

expression suggests marked behavioral changes would occur if these alterations in gene 

expression persisted into adulthood.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 5

Selected small molecule upstream regulators.

Selected ustream regulators.

Upstream Regulator Activation z-score Target genes in dataset target

wortmannin −2.91 AGTR1, BCL2L11, CKB, COL1A1, 
COL1A2, COL3A1, E2F1, EIF1AX, 
ERBB3, FOS, GPD1, IGF1, JUN, 
MAF, MYH11, NR4A1, PTGER4, 
PTGS2, PXN, RAP1A, TH, TYMP, 
VIM

covalent inhibitor of phosphoinositide 3-kinases and 
mTOR

isoquercitrin −2.63 DHCR7, FDFT1, FDPS, HMGCR, 
INSIG1, LDLR, SQLE

plant derived isoflavone, known to induce APOa1 
expression, possible antioxidant and anti-inflammatory

PP1 −2.62 ANGPT2, CXCR4, FOS, GJA1, 
JUN, LHB, PTGS2

kinase inhibitor

sildenafil −2.24 FGF1, GFAP, PDE5A, PTGS2, 
VEGFB

cGMP-specific phosphodiesterase inhibitor, inhibits 
PDE5

pentobarbital −2.21 FOS, JUN, JUNB, NR4A1, SUMO1 Nembutal, CNS depressant, barbiturate, increases 
affinity of GABA-A receptor for GABA (GABA-A 
receptor positive allosteric modulator), increase 
duration of Cl-channel opening.

nimodipine −2.18 FOS, LHB, NR4A1, NR4A2, TH Voltage-dependent L-type calcium channel, 
mineralcorticoid receptor, aryl hydrocarbon receptor,

4-phenylbutyric acid −2.17 ATP2A3, CNP, EHHADH, GJA1, 
MOG, PEX11A, PLP1, SEPP1, 
SERPINA1, SOD2, STK10, TIMP2, 
USP29, YPEL5

treatment of urea cycle disorders, histone deacetylase 
inhibitor and chemical chaperone

phenobarbital −2.09 CYP2C9, CYP4B1, GSTA2, 
GSTM5, INSIG1, PAPSS2, RAF1, 
Sult1a1, THRSP, TRPC3, UGT1A1

barbiturate, possitive modulator of GABA-A receptors

mifepristone −2.06 Acan, ANXA1, ARG1, ATF3, 
BCAT1, BMP7, C3, CA2, Cd24a, 
CHI3L1, COL18A1, DUSP1, 
FDFT1, FOS, GJA1, HDC, ITGB4, 
JUN, JUNB, KIT, LDLR, LOX, 
NDN, NDRG1, NPY1R, NR4A1, 
OPRM1, PLAT, PRKG2, PTGS2, 
PTPN5, RELN, RHOB, ROBO1, 
SERPING1, SFRP2, SLC1A2, 
SPEG, SPP1, Sult1d1, SUMO1, 
VCAN

glucocoricoid and progesterone receptor antagonist

bezafibrate −2.04 ACSL1, ALDH1A2, CAT, CPT1B, 
DLK1, EHHADH, INSIG1, 
LGALS3, MGLL, NR1H3, PANK1, 
PDK4, PEX11A, PTGS2, SCD, 
SLC27A2, TSPO

Peroxisome proliferator activated receptor alpha, 
gamma, delta

testosterone −2.02 A2M, ACSL1, ANXA1, AR, 
ATP5F1, BMP7, CA3, CAMK4, 
CAT, CRHR1, CYP26B1, DHCR24, 
EGFR, FOS, GALR1, GALR2, 
GDI2, HCN4, HCRTR2, HDC, 
HMGCR, HSPA1A/HSPA1B, ID3, 
IGF1, JUN, LHB, MAL, MGST1, 
Mx1/Mx2, NDRG1, NOS1, PDE5A, 
PDYN, PRLR, PTGS2, PXN, RAF1, 
SCNN1A, SDC1, SOD2, SRD5A1, 
SSTR1, SSTR3, STK11, TF, TGFA, 
TUBB3, UGT8, VCAN

steroid hormone, androgen receptor agonist

taurine −2.00 GFAP, PTGS2, SYN1, VIM “amino acid” exerts positive allosteric modulation of 
NMDA and voltage-gated calcium channels-
acamprosate is related: calcium acetylhomotaurinate

cannabidiol −1.98 PENK, PTGS2, TAC1, VIM non-psychoactive component of cannabis, target ?
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Upstream Regulator Activation z-score Target genes in dataset target

salicylic acid −1.98 GRIN2B, KITLG, PTGS2, SLC2A4 aspirin metabolite, reduces fever, antipain, anti 
inflammatory, NSAID, suppresses activity of 
cyclooxygenase (COX) which produces prostaglandins

PD98059 −1.94 ACOT7, AGTR1, ANGPT2, 
ANXA1, AR, ATF3, BCL2L11, 
BCL6, C3, CA2, CCK, CD83, 
CDC42EP1, COL1A1, COL1A2, 
COL3A1, CXCR4, DUSP1, DUSP5, 
E2F1, EGFR, ELK1, ELN, FAH, 
FOS, FURIN, GJA1, GPC5, 
GRIN2C, GSK3B, HPCAL1, ID3, 
IGF1, ITGB5, JUN, JUNB, KRT8, 
LDLR, LHB, MET, MGLL, MYH11, 
NR4A1, PCSK6, PER1, PLAGL1, 
PLAT, PTAFR, PTGER4, PTGS2, 
RNASE4, RPS6, S100A4, SCNN1A, 
SDC1, SEPP1, SERPINA1, SPP1, 
SQLE, ST6GAL1, TF, TH, TIMP2, 
TYMP, VCAN, VIM

O-methylated flavonoid, ERK signaling pathway 
inhibitor

ciglitazone −1.92 CAT, GPD1, JUN, PTGS2 thiazolidinedion similar to pioglitazone. Agonist of 
PPAR gamma (antihyperglycemic). Also decreases 
VEGF production.

gemfibrozil −1.91 BMP7, CNP, CYP2C9, EHHADH, 
FURIN, HCRT, LDLR, MOG, 
NR1H3, PLP1, RTN4, SCD

fibrate, PPARalpha agonist

pitavastatin −1.91 CAT, FDFT1, FDPS, HMGCR, 
HMGCS1, PTGS2, SLC27A2, SQLE

3-hydroxy-3-methylglutaryl-coenzyme A reductase 
inhibitor (member of Statins)

methotrexate −1.84 ALB, Apoc1, ASS1, BTG2, C1R, 
C3, C6, CASP4, CFB, CFH, DUSP1, 
DUSP14, EHHADH, FA2H, 
HMGCS1, IGFBP5, ITIH4, MET, 
NR4A2, PFN2, PTGS2, SCD, 
SEPP1, SERPING1, SLC27A2, 
SPP1, TOB1, UGT1A6

Dihydrofolate reductase inhibitor, so inhibits 
production of tetra hydrofolate

morphine 1.77 CALB1, CCK, EGFR, ERBB3, FOS, 
GFAP, GHR, GNAS, GRIN2B, 
JUNB, KCNAB2, KCNJ9, NR4A1, 
NTRK3, OPRL1, OPRM1, PDYN, 
PENK, PLAT, PTGS2, SLC1A2, TH

mu, delta and kappa opioid receptors

etoposide 1.78 ATF3, BCL2L11, CA2, DUSP1, 
E2F1, IRF7, JUN, NR4A1, PIK3R3, 
SGK1, SOD2, TP73

DNA topoisomerase 2-alpha & 2-beta

cocaine 1.88 ADCY1, ASMT, DRD2, DUSP1, 
DUSP14, DUSP5, EGR4, FOS, 
GABRA6, GABRD, GRM1, GRM5, 
JUN, JUNB, MNS1, NAB2, NOS1, 
NR4A1, NR4A3, OPRM1, PDYN, 
PER1, PPP1R1B, PVALB, SLC1A2, 
SPAG4, TAC1, TH, TSPO, 
UBASH3B

sodium channel protein type 10 submint alpha, 
sodium-dependent dopamine transporter, serotonin 
transporter, noradrenaline transporter, chrmM1, 
chrmM2, sodium channel protein type 5 subunit alpha, 
type 11, submint alpha

nilvadipine 1.89 CD38, CRYAB, GALR2, LGALS8, 
PRKCD, PRKCG, Tpm2

voltage-dependent L-type calcium channel also, 
CACNA2D3, Ltype: CACNA1D

n-3 fatty acids 1.90 CAT, ELOVL6, PTGS2, RGN, SCD, 
SDC1, SLC2A4

CD 437 1.98 AK2, ATP5G3, CLIC1, DNAJA1, 
E2F1, FOS, GNAS, ITGA11, JUN, 
MGST1, NR4A1, SH3BGRL3, 
SUMO1

synthetic retinoid, RAR gamma selective agonist

3-deazaneplanocin 2.00 AKNA, CLDN11, MVP, NOTCH2 AKA Dznep, inhibits expression of EZH2 Enhancer of 
zeste homolog-2, drug is an S-adenosyl-l-
homocysteine (AdoHcy) hydrolase

colchicine 2.19 ATF3, CYP2C9, FOS, JUN, PTGS2 inhibitor Tubulin beta chain

asoprisnil 2.22 DPP4, EGFR, IGF1, RBP4, SGK1 selective progesterone-receptor modulator
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Upstream Regulator Activation z-score Target genes in dataset target

ketoconazole 2.22 CYP2C9, GSTA2, HMGCR, TH, 
UGT1A1

antifungal, inhibits lanosterol 14-alpha demthylase, 
binds androgen receptor

anisomycin 2.28 ATF3, DUSP1, FOS, GJA1, JUN, 
LDLR, NR4A1, PPM1D, SDC1, 
SLC17A6, SLC17A7, SPP1

inhibits protein synthesis, activates stress-activated 
protein kinases (antibiotic), projected to remove 
memories from hippocampus by inhibiting new 
context-specific long-term memories

isoproterenol 2.29 APLN, ATF3, ATP1A1, BCL2L11, 
FOS, HS3ST2, JUN, JUNB, MEF2D, 
NR4A1, PLAGL1, PLP1, PTGS2, 
SCD, TH, TIMP2, TUBB3, TYRO3, 
XRCC1

beta adrenergic receptor agonist

L-glutamic acid 2.37 ACLY, CALB1, DLK1, FOS, GRM5, 
JUN, JUNB, MAP1B, MGLL, 
NOS1, PER1, PTGS2, SLC1A2, 
SORL1

glutamate

desmopressin 2.43 ALB, Anp32a, ATP1A1, FLNA, 
FOS, HSPA1A/HSPA1B, PPP1R1B, 
PXN, SLC2A4, SLC43A2, SLC9A3, 
SPTBN2, ST14

agonist vasopressin V1a, V1b abd V2 receptor

cephaloridine 2.43 CYP2C9, E2F1, Folh1, GSTM5, 
HSPA1A/HSPA1B, KCNH1

antibiotic

methapyrilene 2.52 A2M, ALB, Apoc1, ASS1, ATF3, 
BTG2, CAT, CP, CPS1, DAO, 
EHHADH, ENPP2, GFRA1, GJB1, 
GRB14, GSK3B, HMGCR, IGF1, 
ITIH4, LCAT, MAPK6, Mx1/Mx2, 
NFIB, OPLAH, Ppp1r15a, RXRG, 
SCD, SEPP1, SLC27A2, Sult1a1

antihistamine and anticholinergic (sedative) in OTC 
sleep aids like Sominex, Nytol, etc.

norepinephrine 2.67 ADRBK2, ATP2A2, CACNA1G, 
Ccl9, Cd24a, CITED4, CRY1, CRY2, 
Dos, DUSP1, ELOVL1, ELOVL6, 
FOS, GPD1, GRID2, GRIN2B, 
GRM1, HHIP, HS3ST2, MCAM, 
NAP1L5, NPY1R, NR4A1, NR4A3, 
PER1, PLAGL1, PTGS2, RBP4, 
SGK1, SLC17A6, SLC2A4, THRSP, 
Vof16

neurotransmitter, alpha adrenergic and beta adrenergic 
receptors

glucagon 3.00 FOS, NR4A1, NR4A2, NR4A3, 
PPP1R1B, PXN, SLC2A4, 
SLC43A2, SLC9A3, ST14

opposes effect of insulin

nitrofurantoin 3.08 A2M, ADAMTS1, ALB, Apoc1, 
ASNS, ASS1, BTG2, C3, CAPN2, 
CAT, CP, CPS1, EHHADH, GJB1, 
HMGCR, HMGCS1, HPX, IGF1, 
ITGB4, ITIH4, LCAT, LGALS3, 
LOX, MET, PLAT, SDC1, SEPP1, 
SERPINA1, SLC27A2, SPP1

antibiotic, especially UTI

potassium chloride 3.15 AMIGO2, ATF3, ATP1A1, ATP2B3, 
ATP2B4, BCL2L11, BTG2, CALB1, 
E2F1, FOS, GABRD, ID3, IGFBP5, 
JUN, LHB, NOS1, NPAS4, NPTX1, 
NR4A1, NR4A2, NR4A3, PDYN, 
PTGS2, SLC8A2, SPP1, TH, TP73

source of potassium and chloride ions

bicuculline 3.46 ATF3, BTG2, CYR61, DUSP1, 
EGR4, FOS, IER2, JUN, JUNB, 
NPAS4, NR4A1, NR4A2, PTGS2

competitive antagonist for GABA-A receptor

dalfampridine 3.61 ATF3, BTG2, CYR61, DUSP1, 
EGR4, FOS, IER2, JUN, JUNB, 
NPAS4, NR4A1, NR4A2, PTGS2

potassium voltage-gated channel blocker used to treat 
multiple sclerosis (Ampyra)

Putative upstream regulators that are drugs or small molecules (a subset from Supplemental Table 3). Activation Z-scores that are positive suggest 
the molecule causes changes similar to those of the repeated ethanol exposure, on the subset of genes listed as “Target genes in dataset;” negative 
Z-scores suggest the molecule would prevent or oppose the effects of ethanol on its target genes.
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