175 research outputs found

    From collection resources to intelligent data: Construction of intelligent digital humanities platform for local historical documents of Shanghai Jiao Tong University

    Get PDF
    Local historical documents originated from daily life of people belong to special collection resources that were not published publicly. They are valuable assets of universities and libraries. At present, most documents had only finished digitalization or partial datalization work. However, the requirements of deep knowledge mining in documents data, providing visual analysis, and effectively supporting the research of historic humanities scholars had not been fully met. Taking the local historical documents project of Shanghai Jiao Tong University as an example, using relevant techniques of digital humanities (DH), the in-depth analysis and utilization research of documents data were carried out. On the one hand, the core database of the documents was established based on standardizing metadata cataloguing and establishing metadata association. On the other hand, based on the core database, an intelligent DH system platform was constructed. The platform is to realize full-field retrieval and display of the documents, text analysis, association analysis, statistics, and visual presentation of knowledge. In addition, in the process of using the platform for research, humanities scholars can continuously expand the data dimensions and the relationships between data, achieve intelligent supplementation of documents data and platform self-learning. The concept of DH has led to a new direction of database construction and platform development. In the exploration and practice of DH, libraries should continue to widen thinking, improve service and innovation capabilities, and provide better research perspectives, research environments, research support, and research experience for humanities scholars.GECEM Project (ERC-Starting Grant), ref. 679371, Horizon 2020, project hosted at UPOCenter for Digital Sources of Chinese History, Library at Shanghai Jiao Tong Universit

    Arabidopsis blue light receptor phototropin 1 undergoes blue light-induced activation in membrane microdomains

    Get PDF
    Phototropin (phot)-mediated signaling initiated by blue light (BL) plays a critical role in optimizing photosynthetic light capture at the plasma membrane (PM) in plants. However, the mechanisms underlying the regulation of phot activity at the PM in response to BL remain largely unclear. In this study, by single-particle tracking and step-wise photobleaching analysis we demonstrated that in the dark phot1-GFP proteins remain in an inactive state and mostly present as a monomer. The phot1-GFP diffusion rate and its dimerization increased in a dose-dependent manner in response to BL. In contrast, BL did not affect the lateral diffusion of kinase-inactive phot1 -GFP, whereas it did enhance its dimerization, suggesting that phot1 dimerization is independent of its phosphorylation. Förster resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM) analysis revealed that the interaction between phot1-GFP and AtRem1.3-mCherry was enhanced along with increased time of BL treatment. However, the BL-dependent interaction was not obvious in plants co-expressing phot1 -GFP and AtRem1.3-mCherry, implicating that BL facilitated the translocation of functional phot1-GFP into AtRem1.3-labeled microdomains to activate phot-mediated signaling. Conversely, sterol depletion attenuated phot1-GFP dynamics, dimerization, and phosphorylation. Taken together, these results indicate that membrane microdomains act as an organizing platform essential for proper function of activated phot1 at the PM

    Endurance exercise accelerates myocardial tissue oxygenation recovery and reduces ischemia reperfusion injury in mice

    Get PDF
    Exercise training offers cardioprotection against ischemia and reperfusion (I/R) injury. However, few essential signals have been identified to underscore the protection from injury. In the present study, we hypothesized that exercise-induced acceleration of myocardial tissue oxygenation recovery contributes to this protection. C57BL/6 mice (4 weeks old) were trained on treadmills for 45 min/day at a treading rate of 15 m/min for 8 weeks. At the end of 8-week exercise training, mice underwent 30-min left anterior descending coronary artery occlusion followed by 60-min or 24-h reperfusion. Electron paramagnetic resonance oximetry was performed to measure myocardial tissue oxygenation. Western immunoblotting analyses, gene transfection, and myography were examined. The oximetry study demonstrated that exercise markedly shortened myocardial tissue oxygenation recovery time following reperfusion. Exercise training up-regulated Kir6.1 protein expression (a subunit of ATP-sensitive K(+)channel on vascular smooth muscle cells, VSMC sarc-K(ATP)) and protected the heart from I/R injury. In vivo gene transfer of dominant negative Kir6.1AAA prolonged the recovery time and enlarged infarct size. In addition, transfection of Kir6.1AAA increased the stiffness and reduced the relaxation capacity in the vasculature. Together, our study demonstrated that exercise training up-regulated Kir6.1, improved tissue oxygenation recovery, and protected the heart against I/R injury. This exercise-induced cardioprotective mechanism may provide a potential therapeutic intervention targeting VSMC sarc-K(ATP) channels and reperfusion recovery

    Unraveling TIMP1: a multifaceted biomarker in colorectal cancer

    Get PDF
    Background: The pathogenic genes of colorectal cancer (CRC) have not yet been fully elucidated, and there is currently a lack of effective therapeutic targets. This study used bioinformatics methods to explore and experimentally validate the most valuable biomarkers for colorectal cancer and further investigate their potential as targets.Methods: We analyzed differentially expressed genes (DEGs) based on the Gene Expression Omnibus (GEO) dataset and screened out hub genes. ROC curve and univariate Cox analysis of The Cancer Genome Atlas (TCGA) dataset revealed the most diagnostically and prognostically valuable genes. Immunohistochemistry (IHC) experiments were then conducted to validate the expression level of these selected genes in colorectal cancer. Gene set enrichment analysis (GSEA) was performed to evaluate the enriched signaling pathways associated with the gene. Using the CIBERSORT algorithm in R software, we analyzed the immune infiltrating cell abundance in both high and low gene expression groups and examined the gene’s correlation with immune cells and immune checkpoints. Additionally, we performed drug sensitivity analysis utilizing the DepMap database, and explored the correlation between gene expression levels and ferroptosis based on the The Cancer Genome Atlas dataset.Results: The study identified a total of 159 DEGs, including 7 hub genes: SPP1, MMP1, CXCL8, CXCL1, TIMP1, MMP3, and CXCL10. Further analysis revealed TIMP1 as the most valuable diagnostic and prognostic biomarker for colorectal cancer, with IHC experiments verifying its high expression. Additionally, GSEA results showed that the high TIMP1 expression group was involved in many cancer signaling pathways. Analysis of the TCGA database revealed a positive correlation between TIMP1 expression and infiltration of macrophages (M0, M1, M2) and neutrophils, as well as the expression of immune checkpoint genes, including CTLA-4 and HAVCR2. Drug sensitivity analysis, conducted using the DepMap database, revealed that colorectal cancer cell lines exhibiting elevated levels of TIMP1 expression were more responsive to certain drugs, such as CC-90003, Pitavastatin, Atuveciclib, and CT7001, compared to those with low levels of TIMP1. Furthermore, TIMP1 expression was positively correlated with that of ferroptosis-related genes, such as GPX4 and HSPA5.Conclusion: TIMP1 can be used as a biomarker for colorectal cancer and is associated with the immunological microenvironment, drug sensitivity, and ferroptosis inhibition in this disease

    The Effect of Co-infection of Food-Borne Pathogenic Bacteria on the Progression of Campylobacter jejuni Infection in Mice

    Get PDF
    Campylobacter is a well-known food-borne pathogen that causes human gastroenteritis. Food products that contain Campylobacter may also be contaminated by other pathogens, however, whether this multiple contamination leads to more severe infection remains unclear. In this study, mice were gavaged with Campylobacter jejuni and other food-borne pathogenic bacteria to mimic a multiple infection. It was demonstrated that the C. jejuni load was elevated when the mice were co-infected with C. jejuni and Salmonella typhimurium, and the campylobacteriosis that followed was also enhanced, with features of decreased body weight, heavier bloody stools and more pronounced inflammatory changes to the colon. In addition, infection with C. jejuni was also promoted by co-infection with entero-invasive Escherichia coli but unaffected over time. In contrast to S. typhimurium and entero-invasive E. coli, co-infection by Listeria monocytogenes showed little effect on C. jejuni infection and even hindered its progress. In addition, the intestinal microecology was also affected by co-infection of C. jejuni with other pathogens, with an increased relative abundance of unclassified Enterobacteriaceae, decreased levels of butyric acid and changes in the abundance of several genera of gut microbe, which suggests that some food-borne pathogenic bacteria might affect the progression of C. jejuni infection in mice by influencing the composition of the gut microbiota and the resulting changes in SCFA levels. Collectively, our findings suggest that co-infection of Campylobacter with other pathogenic bacteria can impact on the progression of infection by C. jejuni in mice, which may also have implication for the etiology of Campylobacter on human health

    Target density effects on charge tansfer of laser-accelerated carbon ions in dense plasma

    Full text link
    We report on charge state measurements of laser-accelerated carbon ions in the energy range of several MeV penetrating a dense partially ionized plasma. The plasma was generated by irradiation of a foam target with laser-induced hohlraum radiation in the soft X-ray regime. We used the tri-cellulose acetate (C9_{9}H16_{16}O8_{8}) foam of 2 mg/cm3^{-3} density, and 11-mm interaction length as target material. This kind of plasma is advantageous for high-precision measurements, due to good uniformity and long lifetime compared to the ion pulse length and the interaction duration. The plasma parameters were diagnosed to be Te_{e}=17 eV and ne_{e}=4 ×\times 1020^{20} cm3^{-3}. The average charge states passing through the plasma were observed to be higher than those predicted by the commonly-used semiempirical formula. Through solving the rate equations, we attribute the enhancement to the target density effects which will increase the ionization rates on one hand and reduce the electron capture rates on the other hand. In previsous measurement with partially ionized plasma from gas discharge and z-pinch to laser direct irradiation, no target density effects were ever demonstrated. For the first time, we were able to experimentally prove that target density effects start to play a significant role in plasma near the critical density of Nd-Glass laser radiation. The finding is important for heavy ion beam driven high energy density physics and fast ignitions.Comment: 7 pages, 4 figures, 35 conference

    Draft genome sequence of the Tibetan antelope

    Get PDF
    The Tibetan antelope (Pantholops hodgsonii) is endemic to the extremely inhospitable high-altitude environment of the Qinghai-Tibetan Plateau, a region that has a low partial pressure of oxygen and high ultraviolet radiation. Here we generate a draft genome of this artiodactyl and use it to detect the potential genetic bases of highland adaptation. Compared with other plain-dwelling mammals, the genome of the Tibetan antelope shows signals of adaptive evolution and gene-family expansion in genes associated with energy metabolism and oxygen transmission. Both the highland American pika, and the Tibetan antelope have signals of positive selection for genes involved in DNA repair and the production of ATPase. Genes associated with hypoxia seem to have experienced convergent evolution. Thus, our study suggests that common genetic mechanisms might have been utilized to enable high-altitude adaptation
    corecore