60 research outputs found

    Glassy Li Metal Anode for High-Performance Rechargeable Li Batteries

    Full text link
    Controlling nanostructure from molecular, crystal lattice to the electrode level remains as arts in practice, where nucleation and growth of the crystals still require more fundamental understanding and precise control to shape the microstructure of metal deposits and their properties. This is vital to achieve dendrite-free Li metal anodes with high electrochemical reversibility for practical high-energy rechargeable Li batteries. Here, cryogenic-transmission electron microscopy was used to capture the dynamic growth and atomic structure of Li metal deposits at the early nucleation stage, in which a phase transition from amorphous, disordered states to a crystalline, ordered one was revealed as a function of current density and deposition time. The real-time atomic interaction over wide spatial and temporal scales was depicted by the reactive-molecular dynamics simulations. The results show that the condensation accompanied with the amorphous-to-crystalline phase transition requires sufficient exergy, mobility and time to carry out, contrary to what the classical nucleation theory predicts. These variabilities give rise to different kinetic pathways and temporal evolutions, resulting in various degrees of order and disorder nanostructure in nano-sized domains that dominate in the morphological evolution and reversibility of Li metal electrode. Compared to crystalline Li, amorphous/glassy Li outperforms in cycle life in high-energy rechargeable batteries and is the desired structure to achieve high kinetic stability for long cycle life.Comment: 29 pages, 8 figure

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Synthesis Mechanism of an Environment-Friendly Sodium Lignosulfonate/Chitosan Medium-Density Fiberboard Adhesive and Response of Bonding Performance to Synthesis Mechanism

    No full text
    Environment-friendly medium-density fiberboards (MDFs) prepared using sodium lignosulfonate/chitosan adhesives (L/C) show potential in environment-friendly wood-based panel application. However, the synthesis mechanism of this adhesive and the relationships between synthesis mechanism and bonding performance were not discussed in depth. Herein, the synthesis mechanism of L/C was explored in detail based on characterizations of L/C with different mass ratios of sodium lignosulfonate to chitosan by Fourier-transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. For L/C with different mass ratios of sodium lignosulfonate to chitosan, the corresponding bonding performance was also determined based on characterizations of mechanical and dimensional performance of MDFs. Results showed a 3D network structure of L/C formed through the hydrogen linkages among hydroxyl groups in sodium lignosulfonate and hydroxyl and amino groups in chitosan, amide linkages resulted from reaction between carbonyl groups in sodium lignosulfonate and amino groups in chitosan, and sulfonamide linkages originated from reaction between sulfonic groups in sodium lignosulfonate and amino groups in chitosan. The mechanical performance of MDF was closely related to the 3D network and amino groups of L/C, while the dimensional performance of MDF was negatively affected by sodium lignosulfonate. The MDFs with 1:3 and 1:2 mass ratios of sodium lignosulfonate to chitosan showed superior mechanical properties and comparable dimensional performance with a commercial panel

    Scalable Cell-Free Massive MIMO with Multiple CPUs

    No full text
    In this paper, we consider the uplink of a scalable cell-free massive MIMO (CF-M-MIMO) system where user equipments (UEs) are served only by a subset of access points (APs). All APs are physically divided into predetermined “real clusters”, which are linked to different cooperative central processing units (CPUs). Based on the cooperative nature of the considered communications framework, we assume that each UE is affiliated with a “virtual cluster”, which is associated with some APs coming from different real clusters. Thanks to the degrees of cooperation among multiple CPUs, the uplink spectral efficiencies (SEs) of four different levels are analyzed. To achieve system scalability, the CF-M-MIMO system with multiple CPUs is introduced, which leads to lower SE. To this end, we design a joint combining method based on statistical channel state informations (CSIs), which not only has low complexity but also improves the SE of the system. Simulation results indicate that the average rate of our proposed method can be improved by about 30%

    Scalable Cell-Free Massive MIMO with Multiple CPUs

    No full text
    In this paper, we consider the uplink of a scalable cell-free massive MIMO (CF-M-MIMO) system where user equipments (UEs) are served only by a subset of access points (APs). All APs are physically divided into predetermined “real clusters”, which are linked to different cooperative central processing units (CPUs). Based on the cooperative nature of the considered communications framework, we assume that each UE is affiliated with a “virtual cluster”, which is associated with some APs coming from different real clusters. Thanks to the degrees of cooperation among multiple CPUs, the uplink spectral efficiencies (SEs) of four different levels are analyzed. To achieve system scalability, the CF-M-MIMO system with multiple CPUs is introduced, which leads to lower SE. To this end, we design a joint combining method based on statistical channel state informations (CSIs), which not only has low complexity but also improves the SE of the system. Simulation results indicate that the average rate of our proposed method can be improved by about 30%

    Golgi Reassembly Stacking Protein 2 Modulates Myometrial Contractility during Labor by Affecting ATP Production

    No full text
    The mechanism of maintaining myometrial contractions during labor remains unclear. Autophagy has been reported to be activated in laboring myometrium, along with the high expression of Golgi reassembly stacking protein 2 (GORASP2), a protein capable of regulating autophagy activation. This study aimed to investigate the role and mechanism of GORASP2 in uterine contractions during labor. Western blot confirmed the increased expression of GORASP2 in laboring myometrium. Furthermore, the knockdown of GORASP2 in primary human myometrial smooth muscle cells (hMSMCs) using siRNA resulted in reduced cell contractility. This phenomenon was independent of the contraction-associated protein and autophagy. Differential mRNAs were analyzed using RNA sequencing. Subsequently, KEGG pathway analysis identified that GORASP2 knockdown suppressed several energy metabolism pathways. Furthermore, reduced ATP levels and aerobic respiration impairment were observed in measuring the oxygen consumption rate (OCR). These findings suggest that GORASP2 is up-regulated in the myometrium during labor and modulates myometrial contractility mainly by maintaining ATP production
    corecore