78 research outputs found

    Dynamic estimating the karst tunnel water inrush based on monitoring data during excavation

    Get PDF
    The tunnel water gushing has long been a difficult hydrogeological problem, especially in karst areas. It affects the entire process of tunnel construction, operation and maintenance. In view of the complex disaster-causing mechanism and difficult quantitative predictions of water inrush, several theoretical methods are adopted to realize dynamic assessment of water inrush in the progressive process of tunnel construction. According to a survey conducted in the Zoumaling tunnel near Chongqing, China, 62% of its total length, e.g., 1525 m is associated with karst(including a fault fracture zone). On the basis of collecting real-time monitoring data about water inrush in the excavated section of the Zoumaling tunnel, a fuzzy data analysis method has been used to analyze the content of seven common ions in the inflow water, which makes it possible to classify the groundwater types and to establish the hydrogeological model of the tunnel site. In order to forecast the possibility and quantity of water inrush, it is essential to accurately model the groundwater system spatially. The preliminary forecasting result about untapped section reveals a small possibility of a sudden water inflow disaster and 35,000 m3/d water inflow, which is close to the ultimately measured quantity of water. This study provides a theoretical reference for the prediction of water inrush during tunnel construction, and the main characteristic of this study is reflected in the real-time prediction of tunnel water inrush according to actual tunnel inflow of excavated sections. This approach can be applied in similar situations for the prediction of tunnel water inrush in other karst regions.Key words: karst region, tunnel water inrush; dynamic estimate; fuzzy cluster analysis.Pričakovana dinamika vdora vode v predore na podlagi meritev med njihovo gradnjoPojav vdiranja vode v predore je že dolgo časa poznana težava, še posebej na kraških območjih. Pojavlja se med celotno gradnjo predorov, njihovo uporabo in vzdrževanjem. Za proučevanje potencialnega pojava nesreč in težavnega napovedovanja količine vdora vode je bilo preizkušenih več različnih teoretičnih metod. Te omogočajo oceno dinamike vdora vode med celotnim procesom gradnje predorov. Pri predoru Zoumaling v bližini mesta Chongqing (Kitajska) približno 62 % dolžine predora (1525 m) poteka na območju krasa in čez prelomna območja. Na podlagi v realnem času zbranih podatkov o vdorih vode v izkopanih odsekih predora Zoumaling se je naredila analiza mehkih množic. Ta je bila uporabljena za analizo sedmih v vodi najbolj značilnih ionov in je omogočila razvrstitev podzemne vode v različne skupine, s tem pa izdelavo hidrogeološkega modela neposredne okolice predora. Za analizo verjetnosti vdora vode in njene možne količine je izdelava natančnega modela vodonosnika zelo pomembna. Prvi rezultati, ki se nanašajo na en še nedokončan odsek, kažejo na majhno možnost nenadnega vdora vode. Največja možna dnevna količina vdora je ocenjena na 35.000 m3, kar je blizu najvišje izmerjene dnevne količine dotoka. Pričujoča raziskava vzpostavlja teoretično podlago za napoved vdora vode v času gradnje predora, glavna posebnost pa je napoved vdora v realnem času na podlagi izmerjenega dotoka v že izkopanih odsekih predora. Predstavljen postopek in napovedi, ki jih omogoča, se lahko uporabijo v podobnih primerih tudi na drugih kraških območjih.Ključne besede: kraško območje, vdor vode v predore, pričakovana dinamika, analiza mehkih množic.

    BandMap: Application Mapping with Bandwidth Allocation forCoarse-Grained Reconfigurable Array

    Full text link
    This paper proposes an application mapping algorithm, BandMap, for coarse-grained reconfigurable array (CGRA), which allocates the bandwidth in PE array according to the transferring demands of data, especially the data with high spatial reuse, to reduce the routing PEs. To cover bandwidth allocation, BandMap maps the data flow graphs (DFGs), abstracted from applications, by solving the maximum independent set (MIS) on a mixture of tuple and quadruple resource occupation conflict graph. Compared to a state-of-art BusMap work, Bandmap can achieve reduced routing PEs with the same or even smaller initiation interval (II)

    Source identification and pattern study of closed coal mines water inflow in Songzao Mining Area, Chongqing City

    Get PDF
    Accurate identification of the source of water gushing in closed coal mines and correct division of water gushing modes are of great significance for scientific disposal of water resources waste and water environment pollution caused by closed coal mine drainage. A comprehensive method for water inflow characterization, source identification, and model research for closed coal mines by multivariate analysis of “water quantity–hydrochemistry–microorganism–hydrogeological conditions” is proposed. The method is based on the dynamic monitoring data of water inflow and the water chemical and microbial indexes of several closed coal mines in the Songzao mining area of Chongqing in a hydrological year. Water quality analysis methods, such as flow dynamic analysis of water inflow and flow–rainfall hydro-logical series correlation function, descriptive statistics of water chemical indexes, and the Pearson correla-tion function of water chemical indexes between mine water samples are also used as bases. The method is further coupled with the hydrogeological conditions of the mining area. Results show that there are three types of fluctuations in the response of water inflow from closed coal mines to rainfall: sudden rise and slow drop, slow rise and slow drop, and stable. The difference in water inflow source and water diversion medium is the main reason for the dynamic change in mine water inflow and the temporal and spatial differences in its response to rainfall. It also causes the characteristics of large variability in TDS, pH, chemical correlation degree, and microbial content of mine water. Based on water source identification, four types, rainfall infiltration type, aquifer release type, old empty water overflow type, and compound type, of water gushing modes of closed coal mines in mining areas are proposed. The multivariate comprehensive analysis method identifies the source of water inrush from closed coal mines in karst mining areas effectively, deepens the understanding of the characteristics of water inrush from closed coal mines, and provides theoretical support for the scientific prevention and control of closed coal mine water inrush in Songzao mining area and the coordinated development of environment and resources

    Molecular catalysis of the oxygen reduction reaction by iron porphyrin catalysts tethered into Nafion layers

    Get PDF
    This study was motivated by the need for improved understanding of the kinetics and transport phenomena in a homogeneous catalyst system for the oxygen reduction reaction (ORR). Direct interaction between the sulfonic groups of Nafion and an Fe(III) meso-tetra(N-methyl-4-pyridyl) porphine chloride (Fe(III)TMPyP) compound was observed using FTIR and in situ UV–Vis spectroelectrochemical characterizations. A positive shift of the half wave potential value (E1/2) for ORR on the iron porphyrin catalyst (Fe(III)TMPyP) was observed upon addition of a specific quantity of Nafion ionomer on a glassy carbon working electrode, indicating not only a faster charge transfer rate but also the role of protonation in the oxygen reduction reaction (ORR) process. A membrane electrode assembly (MEA) was made as a sandwich of a Pt-coated anode, a Nafion® 212 membrane, and a Fe(III)TMPyP + Nafion ionomer-coated cathode. This three-dimensional catalysis system has been demonstrated to be working in a H2/O2 proton exchange membrane (PEM) fuel cell test

    Towards graphane field emitters.

    Get PDF
    We report on the improved field emission performance of graphene foam (GF) following transient exposure to hydrogen plasma. The enhanced field emission mechanism associated with hydrogenation has been investigated using Fourier transform infrared spectroscopy, plasma spectrophotometry, Raman spectroscopy, and scanning electron microscopy. The observed enhanced electron emissionhas been attributed to an increase in the areal density of lattice defects and the formation of a partially hydrogenated, graphane-like material. The treated GF emitter demonstrated a much reduced macroscopic turn-on field (2.5 V μm-1), with an increased maximum current density from 0.21 mA cm-2 (pristine) to 8.27 mA cm-2 (treated). The treated GFs vertically orientated protrusions, after plasma etching, effectively increased the local electric field resulting in a 2.2-fold reduction in the turn-on electric field. The observed enhancement is further attributed to hydrogenation and the subsequent formation of a partially hydrogenated structured 2D material, which advantageously shifts the emitter work function. Alongside augmentation of the nominal crystallite size of the graphitic superstructure, surface bound species are believed to play a key role in the enhanced emission. The hydrogen plasma treatment was also noted to increase the emission spatial uniformity, with an approximate four times reduction in the per unit area variation in emission current density. Our findings suggest that plasma treatments, and particularly hydrogen and hydrogen-containing precursors, may provide an efficient, simple, and low cost means of realizing enhanced nanocarbon-based field emission devices via the engineered degradation of the nascent lattice, and adjustment of the surface work function.For assistance in ATR FTIR and EDXRF measurements we thank Dr Bob Keighley and Dr Ralph Vokes of Shimadzu Corp; and for plasma optical spectrophotometry analysis, Dr Thomas Schűtte of PLASUS GmbH. This work is supported by National Key Basic Research Program 973(2010CB327705), National Natural Science Foundation Project (51120125001, 51002031, 61101023, 51202028), Foundation of Doctoral Program of Ministry of Education (20100092110015), an EPSRC Impact Acceleration grant, and the Research Fund for International Young Scientists from NSFC (510501101 42, 51350110232). MT Cole thanks the Oppenheimer Trust for their generous financial support.This is the author accepted manuscript. The final version is available from the Royal Society of Chemistry via http://dx.doi.org/10.1039/C5RA20771

    Structural and Electrical Properties of the YSZ/STO/YSZ Heterostructure

    Get PDF
    The heterostructure thin films of yttria-stabilized zirconia (YSZ)/strontium titanate (STO)/YSZ with various thicknesses were deposited on MgO single crystal substrate by pulsed laser deposition (PLD) method. The structural and electrical properties of the YSZ/STO/YSZ heterostructure were studied through X-ray diffraction (XRD) and electrical conductivity measurements. The in-plane conductivities of the thin films were measured and compared with that of the bulk sample. The highest conductivities were reported for those samples with the thinnest YSZ (220) layers. The observed enhancement in the lateral ionic conductivity was probably caused by the combination of the misfit dislocation density and elastic strain in the interfaces. The enhanced ionic mobility was discussed in terms of the disorder introduced in the oxygen sublattice through the epitaxial strain at the interfaces

    Multiple conformations of SAM-II riboswitch detected with SAXS and NMR spectroscopy

    Get PDF
    Riboswitches are a newly discovered large family of structured functional RNA elements that specifically bind small molecule targets out of a myriad of cellular metabolites to modulate gene expression. Structural studies of ligand-bound riboswitches by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy have provided insights into detailed RNA–ligand recognition and interactions. However, the structures of ligand-free riboswitches remain poorly characterized. In this study, we have used a variety of biochemical, biophysical and computational techniques including small-angle X-ray scattering and NMR spectroscopy to characterize the ligand-free and ligand-bound forms of SAM-II riboswitch. Our data demonstrate that the RNA adopts multiple conformations along its folding pathway and suggest that the RNA undergoes marked conformational changes upon Mg2+ compaction and S-adenosylmethionine (SAM) metabolite binding. Further studies indicated that Mg2+ ion is not essential for the ligand binding but can stabilize the complex by facilitating loop/stem interactions. In the presence of millimolar concentration of Mg2+ ion, the RNA samples a more compact conformation. This conformation is near to, but distinct from, the native fold and competent to bind the metabolite. We conclude that the formation of various secondary and tertiary structural elements, including a pseudoknot, occur to sequester the putative Shine–Dalgarno sequence of the RNA only after metabolite binding
    corecore