24 research outputs found

    Bubble size and bubble rise velocity estimation by means of electrical capacitance tomography within gas-solids fluidized beds

    Get PDF
    Electrical capacitance tomography (ECT) has been developed as a non-invasive and non-intrusive measurement technique to investigate the internal hydrodynamic characteristics of gas-solids systems in fluidized beds. This paper describes an investigation, in which a customized twin-plane ECT sensor was designed and constructed to study the fluid flow processes within a bench-scale gas-solids fluidized bed. A detailed calibration process was conducted using hollow plastic balls of different diameters to derive the reference grey level cut-off values for determining the bubble diameter. In addition, numerical simulations were carried out to investigate the plastic ball wall effect on measured capacitance values. Bubble diameters were estimated by means of the individual reference cut-off values and their linear and second-order fitted curves. Linear back-projection (LBP) and iterative LBP image reconstruction algorithms were compared with respect to estimating the bubble diameter. A number of approaches were investigated to estimate the bubble rise velocity including three methods based on cross-correlation techniques and the detailed signal analysis. Bubble diameters were also obtained using a new approach based on “back-calculation” of the bubble rise velocity through widely accepted empirical correlations from the existing literature

    Design and construction of a two-stage thermoacoustic electricity generator with push-pull linear alternator

    Get PDF
    Travelling-wave thermoacoustic heat engine is capable of converting heat to acoustic power which in turn can be used to generate electricity by a linear alternator. The thermoacoustic heat engine can work in a wide range of heat quality, giving it the ability to be used for waste heat recovery. In this paper, a new configuration of looped-tube travelling wave thermoacoustic engine is proposed, which consists of two identical stages each having a power extraction point, and the linear alternator connecting these two points working in “push-pull” mode. This enables a more effective acoustic impedance matching compared to the use of multiple linear alternators known in the literature. The laboratory demonstrator has been designed, built and tested. The applied heat source temperature is similar to that of the internal combustion engine exhaust gases in order to explore the potential of using the device for waste heat recovery from road or marine transport. In experiments, the maximum electric power of 48.6 W at thermal-to-electric efficiency of around 6% was achieved with helium at 28 bar as working fluid and 297 K temperature difference across the regenerator. The performance of the device has been analysed and compared to modelling performed using DeltaEC simulation tool

    Development and assessment of two-stage thermoacoustic electricity generator

    Get PDF
    This paper presents the development and assessment of a two-stage thermoacoustic electricity generator that aims to mimic the conversion of waste heat from the internal combustion engine exhaust gases into useful electricity. The one wavelength configuration consists of two identical stages which allow coupling a linear alternator in a “push-pull” mode because of the 180 ◩ out of phase acoustic excitation on two sides of the piston. This type of coupling is a possible solution for the low acoustic impedance of looped-tube traveling-wave thermoacoustic engines. The experimental set-up is 16.1 m long and runs at 54.7 Hz. The working medium is helium at maximum pressure of 28 bar. In practice, the maximum generated electric power was 73.3 W at 5.64% thermal-to-electric efficiency. The working parameters, namely load resistance, mean pressure and heating power, were investigated. System debugging illustrates the effect of local acoustic impedance of the regenerator on the start-up process of the thermoacoustic engine. The additional modelling showed that the feedback loop length can be reduced by using a combination of acoustic inertance and compliance components

    Computationally Efficient Approximations Using Adaptive Weighting Coefficients for Solving Structural Optimization Problems

    Get PDF
    With rapid development of advanced manufacturing technologies and high demands for innovative lightweight constructions to mitigate the environmental and economic impacts, design optimization has attracted increasing attention in many engineering subjects, such as civil, structural, aerospace, automotive, and energy engineering. For nonconvex nonlinear constrained optimization problems with continuous variables, evaluations of the fitness and constraint functions by means of finite element simulations can be extremely expensive. To address this problem by algorithms with sufficient accuracy as well as less computational cost, an extended multipoint approximation method (EMAM) and an adaptive weighting-coefficient strategy are proposed to efficiently seek the optimum by the integration of metamodels with sequential quadratic programming (SQP). The developed EMAM stems from the principle of the polynomial approximation and assimilates the advantages of Taylor’s expansion for improving the suboptimal continuous solution. Results demonstrate the superiority of the proposed EMAM over other evolutionary algorithms (e.g., particle swarm optimization technique, firefly algorithm, genetic algorithm, metaheuristic methods, and other metamodeling techniques) in terms of the computational efficiency and accuracy by four well-established engineering problems. The developed EMAM reduces the number of simulations during the design phase and provides wealth of information for designers to effectively tailor the parameters for optimal solutions with computational efficiency in the simulation-based engineering optimization problems

    Development of experimental techniques for measurement of heat transfer rates in heat exchangers in oscillatory flows

    Get PDF
    Heat exchangers are important components of thermoacoustic devices. In oscillatory flow conditions, the flow and temperature fields around the heat exchangers can be quite complex, and may significantly affect heat transfer behaviour. As a result, one cannot directly apply the heat transfer correlations for steady flows to the design of heat exchangers for oscillatory flows. The fundamental knowledge of heat transfer in oscillatory flows, however, is still not well-established. The aim of the current work is to develop experimental apparatus and measurement techniques for the study of heat transfer in oscillatory flows. The heat transferred between two heat exchangers forming a couple was measured over a range of testing conditions. Three couples of finned-tube heat exchangers with different fin spacing were selected for the experiment. The main parameters considered were fin spacing, fin length, thermal penetration depth and gas displacement amplitude. Their effects on the heat exchanger performance were studied. The results were summarised and analysed in terms of heat transfer rate and dimensionless heat transfer coefficient: Colburn-j factor. In order to obtain the gas side heat transfer coefficient in oscillatory flows, the water side heat transfer coefficient is required. Thus, an experimental apparatus for unidirectional steady test was also developed and a calculation method to evaluate the heat transfer coefficient was demonstrated. The uncertainties associated with the measurement of heat transfer rate were also considered

    Thermal performance of finned-tube thermoacoustic heat exchangers in oscillatory flow conditions

    Get PDF
    Heat exchangers play a key role in the overall performance of thermoacoustic devices. Due to the complex nature of oscillatory flows, the underlying mechanism of heat transfer in oscillatory flows is still not fully understood. This work investigates the effect of fin length and fin spacing on the thermal performance of finned-tube heat exchangers. The heat transfer rate between two finned-tube heat exchangers arranged side-by-side in an oscillatory flow was measured over a range of testing conditions. The results are presented in terms of heat transfer coefficient and heat transfer effectiveness. Comparisons are made between experimental results of this work and a number of models, such as, the Time-Average Steady-Flow Equivalent (TASFE) model, the Root Mean Square Reynolds Number (RMS-Re) model and the boundary layer conduction model, as well as several empirical correlations in literature. A new empirical correlation is proposed to be used for the prediction of thermal performance for finned-tube heat exchangers in oscillatory flows. The uncertainties associated with the measurement of heat flux are estimated

    Effects of edge shapes on thermal-fluid processes in oscillatory flows

    Get PDF
    Thermoacoustic machines, Stirling engines or coolers, and pulse tube coolers are examples of energy systems that operate based on oscillatory flow principles. This class of technology would achieve an improved efficiency from appropriately designed heat exchangers, stacks, regenerators and thermal buffer tubes. In this paper, heat transfer and oscillatory flow behaviour in three identical parallel-plate heat exchangers, one ‘heat source’ positioned between two ‘heat sinks’, are investigated using numerical method. The effect of different plate edge shapes on heat transfer, flow structures and acoustic pressure drop are examined at a selected drive ratio of 0.3 – 2.0%. Flow parameters show a strong dependency on drive ratio and flow direction, especially at low excitation where gas displacements are below or comparable to the heat exchanger length. Cone edge shape minimises the flow complexity better than other shapes with a negligible effect on the heat transfer. The result of this study will benefit the design and development of compact and high-efficiency heat exchangers for the next generation of oscillatory-flow energy and thermal management systems

    Microwave ablation induces Th1-type immune response with activation of ICOS pathway in early-stage breast cancer

    No full text
    Background Despite great advances in the treatment of breast cancer, innovative approaches are still needed to reduce metastasis. As a minimally invasive local therapy (not standard therapy for breast cancer), microwave ablation (MWA) has been attempted to treat breast cancer, but the local effect and immune response induced by MWA have seldom been reported.Methods The clinical study was performed to determine the complete ablation rate of MWA for early-stage breast cancer. Secondary endpoints included safety and antitumor immune response. 35 subjects from this clinical study were enrolled in the current report, and the local effect was determined by pathological examinations or follow-up. To investigate MWA-induced immune response, patients treated with surgery (n=13) were enrolled as control, and blood samples were collected before and after MWA or surgery. The immune cell populations, serum cytokines, secretory immune checkpoint molecules, and T-cell receptor sequencing were analyzed.Results Of 35 enrolled patients, 32 (91.4%) showed complete ablation. Compared with surgery, MWA induced significantly increased levels of inducible co-stimulator (ICOS)+ activated CD4+ T cells and serum interferon gamma, indicating a shift in the Th1/Th2 balance toward Th1. The activated ICOS pathway was involved in the MWA-induced adaptive immune response. T-cell receptor sequencing revealed MWA of primary tumor activated T lymphocytes expansion and recognized some cancer-specific antigens. Moreover, CD4+ effector memory T-cell response was induced by MWA, and the immune response still existed after surgical resection of the ablated tumor.Conclusions MWA may not only be a promising local therapy but also a trigger of antitumor immunity for breast cancer, opening new avenues for the treatment of breast cancer. Combinatorial strategy using additional agents which boost MWA-induced immune response could be considered as potential treatment for clinical study for early breast cancer therapy
    corecore