553 research outputs found

    The Genome Sequence of Polymorphum gilvum SL003B-26A1T Reveals Its Genetic Basis for Crude Oil Degradation and Adaptation to the Saline Soil

    Get PDF
    Polymorphum gilvum SL003B-26A1T is the type strain of a novel species in the recently published novel genus Polymorphum isolated from saline soil contaminated with crude oil. It is capable of using crude oil as the sole carbon and energy source and can adapt to saline soil at a temperature of 45°C. The Polymorphum gilvum genome provides a genetic basis for understanding how the strain could degrade crude oil and adapt to a saline environment. Genome analysis revealed the versatility of the strain for emulsifying crude oil, metabolizing aromatic compounds (a characteristic specific to the Polymorphum gilvum genome in comparison with other known genomes of oil-degrading bacteria), as well as possibly metabolizing n-alkanes through the LadA pathway. In addition, COG analysis revealed Polymorphum gilvum SL003B-26A1T has significantly higher abundances of the proteins responsible for cell motility, lipid transport and metabolism, and secondary metabolite biosynthesis, transport and catabolism than the average levels found in all other genomes sequenced thus far, but lower abundances of the proteins responsible for carbohydrate transport and metabolism, defense mechanisms, and translation than the average levels. These traits support the adaptability of Polymorphum gilvum to a crude oil-contaminated saline environment. The Polymorphum gilvum genome could serve as a platform for further study of oil-degrading microorganisms for bioremediation and microbial-enhanced oil recovery in harsh saline environments

    Should gold be held under global economic policy uncertainty?

    Get PDF
    This paper investigates the ability of gold to hedge worldwide risks from the perspective of global economic policy uncertainty (GEPU). By applying the full- and sub-sample rolling-window bootstrap causality tests to analyze the dynamic interaction between GEPU and gold price (GP). It can be observed that gold can effectively hedge risks of GEPU during the Asian financial crisis, dot-com bubble and global economic crisis, but this result does not hold in non-crisis period. GEPU manifests two-way impacts on the GP in a few periods, this relationship between GEPU and GP being consistent with the hypothesis in the general equilibrium model, which states that changes in GEPU lead to the fluctuations of GP. In turn, GP has both positive and negative impacts on GEPU. In the current complex economic situation, governments and investors can consider gold to hedge risks of GEPU, especially during the economic crises

    Comparative transcriptomics of multidrug-resistant Acinetobacter baumannii in response to antibiotic treatments

    Get PDF
    Abstract Multidrug-resistant Acinetobacter baumannii, a major hospital-acquired pathogen, is a serious health threat and poses a great challenge to healthcare providers. Although there have been many genomic studies on the evolution and antibiotic resistance of this species, there have been very limited transcriptome studies on its responses to antibiotics. We conducted a comparative transcriptomic study on 12 strains with different growth rates and antibiotic resistance profiles, including 3 fast-growing pan-drug-resistant strains, under separate treatment with 3 antibiotics, namely amikacin, imipenem, and meropenem. We performed deep sequencing using a strand-specific RNA-sequencing protocol, and used de novo transcriptome assembly to analyze gene expression in the form of polycistronic transcripts. Our results indicated that genes associated with transposable elements generally showed higher levels of expression under antibiotic-treated conditions, and many of these transposon-associated genes have previously been linked to drug resistance. Using co-expressed transposon genes as markers, we further identified and experimentally validated two novel genes of which overexpression conferred significant increases in amikacin resistance. To the best of our knowledge, this study represents the first comparative transcriptomic analysis of multidrug-resistant A. baumannii under different antibiotic treatments, and revealed a new relationship between transposons and antibiotic resistance

    Should Bitcoin be held under the U.S. partisan conflict?

    Get PDF
    This paper probes the interrelationship between Bitcoin price (BP) and the U.S. partisan conflict (PC) by performing the bootstrap full- and sub-sample Granger causality tests. The positive influence from PC to BP reveals that Bitcoin can be considered as a tool to avoid the uncertainty caused by the rise in PC. However, this view cannot be supported by the negative impact, the major reason is that the burst of bubble undermines the hedging ability of Bitcoin. The above results are inconsistent with the intertemporal capital asset pricing model (ICAPM), underlining that high PC may drive BP to rise, in order to compensate for the losses and costs from factionalism. Conversely, BP has a negative impact on PC, suggesting that the U.S. political situation can be reflected by the Bitcoin market. Under the circumstance of the fiercer factionalism in the U.S., this investigation can benefit investors and related authorities. First published online 04 February 202

    Novel compound heterozygous mutation in the CNGA1 gene underlie autosomal recessive retinitis pigmentosa in a Chinese family

    Get PDF
    Synopsis Retinitis pigmentosa (RP) describes a group of inherited retinopathies that are characterized by the progressive degeneration of photoreceptor neurons, which causes night blindness, a reduction in the peripheral visual field and decreased visual acuity. More than 50 RP-related genes have been identified. In the present study, we analysed a Chinese family with autosomal recessive RP . We identified a compound heterozygous mutation, c.265delC and c.1537G>A, in CNGA1 using targeted next-generation sequencing (NGS) of RP-causing genes. The mutations were validated in the family members by Sanger sequencing. The mutations co-segregated with the RP phenotype and were absent from ethnically-matched control chromosomes. The mutant (mut) CNGA1 p.(G513R) protein caused by the mis-sense novel mutation c.1537G>A was expressed in vitro. The mut CNGA1 p.(G513R) protein was largely retained inside the cell rather than being targeted to the plasma membrane, suggesting the absence of cGMP-gated cation channels in the plasma membrane would be deleterious to rod photoreceptors, leading lead to RP

    Observation of Fluctuation Spin Hall Effect in Antiferromagnet

    Full text link
    The spin Hall effect (SHE) can generate a pure spin current by an electric current, which is promisingly used to electrically control magnetization. To reduce power consumption of this control, a giant spin Hall angle (SHA) in the SHE is desired in low-resistivity systems for practical applications. Here, critical spin fluctuation near the antiferromagnetic (AFM) phase-transition is proved as an effective mechanism to create an additional part of SHE, named as fluctuation spin Hall effect (FSHE). This FSHE enhances the SHA due to the AFM spin fluctuation between conduction electrons and local spins. We detect the FSHE with the inverse and direct spin Hall effect (ISHE and DSHE) set-up and their temperature (T) dependences in the Cr/MgO/Fe magnetic tunnel junctions (MTJs). The SHA is significantly enhanced when temperature is approached to the N\'eel temperature (T_N) and has a peak value of -0.34 at 200 K near T_N. This value is higher than the room-temperature value by 240% and comparable to that of heavy metals Ta and W. Furthermore, the spin Hall resistivity of Cr well fits the modeled T-dependence when T approaches T_N from low temperatures, implying the AFM spin fluctuation nature of strong SHA enhancement. Thus, this study demonstrates the critical spin fluctuation as a prospective way of increasing SHA and enriches the AFM material candidates for spin-orbitronic devices.Comment: 27 pages, 9 figure

    The Renal Protective Effect of Jiangya Tongluo Formula, through Regulation of Adrenomedullin and Angiotensin II, in Rats with Hypertensive Nephrosclerosis

    Get PDF
    We investigated the effect of Jiangya Tongluo (JYTL) formula on renal function in rats with hypertensive nephrosclerosis. A total of 21 spontaneously hypertensive rats (SHRs) were randomized into 3 groups: valsartan (10 mg/kg/d valsartan), JYTL (14.2 g/kg/d JYTL), and a model group (5 mL/kg/d distilled water); Wistar Kyoto rats comprised the control group (n = 7, 5 mL/kg/d distilled water). Treatments were administered by gavage every day for 8 weeks. Blood pressure, 24-h urine protein, pathological changes in the kidney, serum creatinine, and blood urea nitrogen (BUN) levels were estimated. The contents of adrenomedullin (ADM) and angiotensin II (Ang II) in both the kidney and plasma were evaluated. JYTL lowered BP, 24-h urine protein, serum creatinine, and BUN. ADM content in kidneys increased and negatively correlated with BP, while Ang II decreased and negatively correlated with ADM, but there was no statistically significant difference of plasma ADM between the model and the treatment groups. Possibly, activated intrarenal renin-angiotensin system (RAS) plays an important role in hypertensive nephrosclerosis and the protective function of ADM via local paracrine. JYTL may upregulate endogenous ADM level in the kidneys and antagonize Ang II during vascular injury by dilating renal blood vessels

    An Algorithm for Preferential Selection of Spectroscopic Targets in LEGUE

    Full text link
    We describe a general target selection algorithm that is applicable to any survey in which the number of available candidates is much larger than the number of objects to be observed. This routine aims to achieve a balance between a smoothly-varying, well-understood selection function and the desire to preferentially select certain types of targets. Some target-selection examples are shown that illustrate different possibilities of emphasis functions. Although it is generally applicable, the algorithm was developed specifically for the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) survey that will be carried out using the Chinese Guo Shou Jing Telescope. In particular, this algorithm was designed for the portion of LEGUE targeting the Galactic halo, in which we attempt to balance a variety of science goals that require stars at fainter magnitudes than can be completely sampled by LAMOST. This algorithm has been implemented for the halo portion of the LAMOST pilot survey, which began in October 2011.Comment: 17 pages, 7 figures, accepted for publication in RA

    Ecological engineering projects increased vegetation cover, production, and biomass in semiarid and subhumid Northern China

    Get PDF
    Multiple ecological engineering projects have been implemented in semiarid and subhumid Northern China since 1978 with the purpose to combat desertification, control dust storms, and improve vegetation cover. Although a plethora of local studies exist, the effectiveness of these projects has not been studied in a systematic and comprehensive way. Here, we used multiple satellite-based time-series data as well as breakpoint analysis to assess shifts in leaf area index (a proxy for green vegetation cover), gross primary production, and aboveground biomass in Northern China. We documented increased vegetation growth in northwest and southeastern parts of the region, despite drought anomalies as documented by the standardized precipitation-evapotranspiration index during 1982–2016. Significant breakpoints in leaf area index were observed for over 72.5% of the southeastern and northwestern regions, and 70.6% of these breakpoints were detected after 1999, which correspond well to the areas with the highest ecological engineering efforts. Areas with negative trends were mainly located in the Inner Mongolian Plateau, Hulun Biur, Horqin Sand Land, and urban areas. The Loess Plateau had the largest increase in vegetation growth, followed by the north parts of Northern China where biomass increased more in the provinces of Shanxi, Liaoning, Shannxi, Hebei, and Beijing than Xinjiang, Inner Mongolia, Tianjin, and Qinghai. Our results show that multiple ecological engineering projects in the region have increased vegetation cover, production, and aboveground biomass that have led to improved environmental conditions in the study area

    Thermodynamically favorable reactions shape the archaeal community affecting bacterial community assembly in oil reservoirs

    Get PDF
    Microbial community assembly mechanisms are pivotal for understanding the ecological functions of microorganisms in biogeochemical cycling in Earth’s ecosystems, yet rarely investigated in the context of deep terrestrial ecology. Here, the microbial communities in the production waters collected from water injection wells and oil production wells across eight oil reservoirs throughout northern China were determined and analyzed by proportional distribution analysis and null model analysis. A ‘core’ microbiota consisting of three bacterial genera, including Arcobacter, Pseudomonas and Acinetobacter, and eight archaeal genera, including Archaeoglobus, Methanobacterium, Methanothermobacter, unclassified Methanobacteriaceae, Methanomethylovorans, Methanoculleus, Methanosaeta and Methanolinea, was found to be present in all production water samples. Canonical correlation analysis reflected that the core archaea were significantly influenced by temperature and reservoir depth, while the core bacteria were affected by the combined impact of the core archaea and environmental factors. Thermodynamic calculations indicate that bioenergetic constraints are the driving force that governs the enrichment of two core archaeal guilds, aceticlastic methanogens versus hydrogenotrophic methanogens, in low- and high-temperature oil reservoirs, respectively. Collectively, our study indicates that microbial community structures in wells of oil reservoirs are structured by the thermodynamic window of opportunity, through which the core archaeal communities are accommodated directly followed by the deterministic recruiting of core bacterial genera, and then the stochastic selection of some other microbial members from local environments. Our study enhances the understanding of the microbial assembly mechanism in deep terrestrial habitats. Meanwhile, our findings will support the development of functional microbiota used for bioremediation and bioaugmentation in microbial enhanced oil recovery
    • …
    corecore