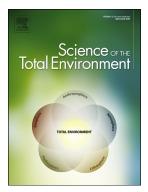
Northumbria Research Link

Citation: Zhao, Jie-Yu, Hu, Bing, Dolfing, Jan, Li, Yan, Tang, Yue-Qin, Jiang, Yiming, Chi, Chang-Qiao, Xing, Jianmin, Nie, Yong and Wu, Xiao-Lei (2021) Thermodynamically favorable reactions shape the archaeal community affecting bacterial community assembly in oil reservoirs. Science of the Total Environment. p. 146506. ISSN 0048-9697 (In Press)

Published by: Elsevier

http://nrl.northumbria.ac.uk/id/eprint/45745/

URL: <https: 10.1016="" doi.org="" j.scitotenv.2021.146506=""></https:>				https://doi.org/10.1016/j.scitotenv.2021.146506				
This	version	was	downloaded	from	Northumbria	Research	Link:	


Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.)

University Library

Thermodynamically favorable reactions shape the archaeal community affecting bacterial community assembly in oil reservoirs

Jie-Yu Zhao, Bing Hu, Jan Dolfing, Yan Li, Yue-Qin Tang, Yiming Jiang, Chang-Qiao Chi, Jianmin Xing, Yong Nie, Xiao-Lei Wu

PII:	S0048-9697(21)01574-6
DOI:	https://doi.org/10.1016/j.scitotenv.2021.146506
Reference:	STOTEN 146506
To appear in:	Science of the Total Environment
Received date:	8 January 2021
Revised date:	19 February 2021
Accepted date:	11 March 2021

Please cite this article as: J.-Y. Zhao, B. Hu, J. Dolfing, et al., Thermodynamically favorable reactions shape the archaeal community affecting bacterial community assembly in oil reservoirs, *Science of the Total Environment* (2021), https://doi.org/10.1016/j.scitotenv.2021.146506

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier.

Thermodynamically favorable reactions shape the archaeal

community affecting bacterial community assembly in oil reservoirs

Jie-Yu Zhao^{1#}, Bing Hu^{2#}, Jan Dolfing³, Yan Li⁴, Yue-Qin Tang⁵, Yiming Jiang⁶, Chang-Qiao Chi¹,

Jianmin Xing⁷, Yong Nie^{1*}, Xiao-Lei Wu^{1,8*}

¹College of Engineering, Peking University, Beijing, China

² Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology of China; Institute of Biochemical Engineering, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China

³ Faculty of Engineering and Environment, Northumbria Un, 'ers' ,y, Newcastle upon Tyne NE1 8QH, United Kingdom

⁴ School of the Environment and Safety Engineering, Jir Agsu University, Zhenjiang, China

⁵ College of Architecture and Environment, Sichra, University, Chengdu, China

⁶ Institute of Virology, Helmholtz Zentru n N ünchen/Technical University of Munich, Munich, Germany

⁷ CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China

⁸ Institute of Ocean Research Pelring University, Beijing, China

*Corresponding authors: Yon, Nie (nieyong@pku.edu.cn) and Xiao-Lei Wu

(xiaolei_wu@pku.ea. cn,. Tel: +86 10-62759047; Fax: +86 10-62759047.

[#]Jie-Yu Zhao and Bing Hu are co-first authors and contributed equally to this work. As the main focus lies on bioinformatics analysis of the environmental microbial communities, Jie-Yu Zhao is named first.

Running title: Thermodynamic rules shape oil reservoir microbiome

Abstract Microbial community assembly mechanisms are pivotal for understanding the ecological functions of microorganisms in biogeochemical cycling in Earth's ecosystems, yet rarely investigated in the context of deep terrestrial ecology. Here, the microbial communities in the production waters collected from water injection wells and oil production wells across eight oil reservoirs throughout northern China were determined and analyzed by proportional distribution analysis and null model analysis. A 'core' microbiota consisting of three bacterial genera, including Arcobacter, Pseudomonas and Acinetobacter, and eight archaeal genera, including Archaeoglobus, Methanobacterium, Methanothermobacter, uncl ssified Methanobacteriaceae, Methanomethylovorans, Methanoculleus, Methanosaeta and Nethanolinea, was found to be present in all production water samples. Canonical correlation analysis reflected that the core archaea were significantly influenced by temperature and restriving the the core bacteria were affected by the combined impact of the core archaea and environmental factors. Thermodynamic calculations indicate that bioer ergetic constraints are the driving force that governs the enrichment of two core a charal guilds, aceticlastic methanogens versus hydrogenotrophic methanogens, in low- .nd high-temperature oil reservoirs, respectively. Collectively, our study indicates that microbial community structures in wells of oil reservoirs are structured by the thermodynamic wirdow of opportunity, through which the core archaeal communities are accommodated directly followed by the deterministic recruiting of core bacterial genera, and then the stochastic selection of some other microbial members from local environments. Our stucy en ances the understanding of the microbial assembly mechanism in deep terrestrial habitats Meanwhile, our findings will support the development of functional microbiota used for bioremediation and bioaugmentation in microbial enhanced oil recovery.

Key words: Microbial community assembly, oil reservoirs, thermodynamic constraint, core archaea, microbiome

Introduction

Microorganisms are present in nearly all habitats on the earth and play fundamental roles in global biogeochemical cycles, thus shaping the entire environment of the planet [1]. Community assembly mechanisms are essential for understanding the ecological functions of microorganisms in biogeochemical cycling in Earth's ecosystems [2-4]. Both deterministic and stochastic processes play important roles in community assembly [5,6]. The deterministic processes involve niche-based mechanisms, including microbial interactions and environmental filtering, while the stochastic processes include random births, deaths, colonization, 'xtinction, and speciation [7]. However, how these two processes shape the microbial communit / tog ther is still unclear.

The functional microbial structures of communities are shalled up physical-chemical factors [8] and can be explained based on the general laws of thermod_mamics and stoichiometry [9]. For example, methanogenic archaea play essential roles in h_3 -coarbon degradation in oil reservoirs by removing products generated in the upstream icide genic and acetogenic reactions that would otherwise become thermodynamically unformation [10]. Acetotrophic methanogens rather than hydrogenotrophic methanogens were predominant in the anaerobic microbial communities under high caron dioxide (CO₂) partial pressure, because aceticlastic methanogenesis was thermodynamically easier than the systerophic acetate oxidation linked with hydrogenotrophic methanogenesis under this condition. [11]. However, it is still unknown what the basic force is to build up microbial communities in nature and how it drives the assembly of microbial communities.

Modeling the intrinsite mechanism of microbial community assembly in complex natural ecosystems such as soils and oceans, with their multilevel, multifactor, and multivariable characteristics, is a considerable challenge. The use of petroleum reservoirs as object to learn about the microbial community assembly mechanism seems to have potential. Firstly, microbial ecosystems in petroleum reservoirs are seldomly influenced by exogenous abiotic and biotic variables due to their space independence, making them an important type of natural ecosystems on the earth. Secondly, the carbon sources available to microorganisms in petroleum reservoirs were limited to hydrocarbons with different molecular weights, making the microbial members in the ecosystems either oil degraders or companions of oil degraders involved in hydrocarbon

3

mineralization to methane (CH_4) and CO_2 [12, 13]. The microbiota compositions in petroleum reservoirs have been investigated in Asia, Europe, Africa, North America, and South America [14-17]. For example, Shelton et al. took production water samples from 22 oil production wells in north central Lousiana, USA, and found that the microbial diversities were driven by the relative extent of crude oil biodegradation, salinity and well depth, but implied that no single member could be the indicator to reflect the crude oil methanogenic capability of the endogenous microbiota [18]. Kim et al. expected to develop microbial-enhanced oil recovery strategy for high-temperature oil reservoirs, so they determined the microbial compositions in produced water samples taken from five geographically distant thermophilic oil reservoirs in USA and Canada (70~90°C), and found that the microbial community structure exhibited high similarity, regardless of the geographical distances or different physic chemical properties in each site [19]. Sierra-Garcia et al. compared the microbiomes of cru e oi and produced water samples taken from high-temperature, relative saline oil wells in Miranga oilfield, Brazil, with and without water flooding, and found that the conventional we'r mooding elevated the relative proportion of bacteria, introduced a greater metabon ersatility, and changed the in-situ hydrocarbon degradation from anaerobic digestion to perobic pathways [20]. However, most previous microbial ecology studies focused on small a... our is of petroleum reservoirs with special properties. The lack of a comprehensive under tanding of the microbiota in different petroleum reservoirs interferes with the determination of the pattern of microbiota composition.

Here, we sampled production and injection water samples from different petroleum reservoirs with various geochemical conditions in China and analyzed their microbial compositions using high-throughput 454 pyrosequencing of 16S rRNA genes. Our results show that some core bacterial and archaeal species were universally existent in all samples regardless of the spatial distances, while some other members were locally unique, and that the functional archaeal distribution was in accord with rational thermodynamic constraints, indicating that both deterministic and stochastic processes occurred during the microbial community assembly and that the intrinsic assembly mechanism likely leads toward a thermodynamic window of opportunity.

Results

Spatial variations in physical and geochemical conditions in petroleum reservoirs

In this study, a total of 50 water samples were collected for microbial community analysis from eight injection wells and 42 production wells in eight blocks of various oilfields in northern China, including Dagang Oilfield Block Yangerzhuang (DGD), Daqing Oilfield Northern Block II (DQN), Huabei Oilfield Block Menggulin (HBM) and Block XIX (HBB), Liaohe Oilfield Block A12 (LHA), Shengli Oilfield Block Zhan III (SLZ), and Xinjiang Oilfield Block VI (XJT) and Block VII (XJQ). The locations of the eight oilfields and the geochemical conditions in each water-flooded petroleum reservoir at the sampling time are shown in Fig 1.

Principal component analysis (PCA) based on environmental parameters showed that geochemical conditions in petroleum reservoirs varied along with spacial variations (Fig. S1). For instance, the geochemical conditions of XJT and XJQ in Normwest China were significantly different from those of DGD and SLZ in North China. Furthermore, Spearman's rank correlation test showed that temperature and depth exhibited a significantly positive correlation (ρ =0.851, P=3.444e⁻¹⁵), while TOC and pH showed a significantly negative correlation (ρ =-0.807, P=9.8e⁻⁰⁹) (Table S1).

The composition of the microbial con. runities varies geographically

Pyrosequencing analysis of the microbial communities in the 50 water samples identified 246,497 and 144,194 bacterial and archaeol sequences, respectively. These sequences were arranged into 6,174 bacterial and 1,727 archoear OTUs. Good's coverage indices for most samples were found to be over 90% (Table S.). Remarkably, the bacterial communities exhibited higher alpha diversity than the archaeol communities, as indicated by the Shannon-Weiner and Simpson indices ($P = 1.391 \times 10^{-6}$ and $P = 4.514 \times 10^{-6}$, Table S2).

Taxonomically, the microbial community structures at the phylum level were similar in different petroleum reservoirs. *Proteobacteria* (45.41-100%) and *Euryarchaeota* (69.93-100%) were the most abundant bacterial and archaeal phyla, respectively, across all samples, and *Bacteroidetes, Actinobacteria, Firmicutes, Caldiserica, Crenarchaeota*, and *Thaumarchaeota* were detected in most of the petroleum reservoirs (Fig S2). However, predominance at the class level varied geographically. *Epsilonproteobacteria* and *Methanomicrobia* were dominant in XJT, DQN, and several HBM production wells, while *Gammaproteobacteria* and *Methanobacteria*.

were dominant in XJQ, DGD, and HBB, and *Alphaproteobacteria* was only predominant in LHA (Fig. S2).

Core archaea as the fundamental participants in the microbial communities of petroleum reservoirs

As shown in Fig 2a and 2b, based on their frequencies to be identified in injection and production samples of DGD, the archaeal and bacterial OTUs were grouped into block-level core microbes (OTUs or genera present in >70% of the samples in one block), block-level variable microbes (OTUs or genera present in at least two but <70% of the samples in one block), and block-level unique microbes (OTUs or genera only present in a unique sample). Similar processes were operated on the archaeal and bacterial communities of samp¹: collected from the other seven oilfields to obtain their block-level core, variable and unic e nucrobes (Fig S3). The block-level core and variable microbes showed greater relative vbun lances than the block-level unique microbes in every oil reservoir (Table S3). The average proportions of the block-level core and variable microbes at the OUT level and the ginus level for all blocks were over 72.19% and 88.26%, respectively. As summarized in *Logic*, some block-level core bacterial genera, including Pseudomonas, Acinetobacter, and Arc. bacter, and some block-level archaeal genera, including Archaeoglobus, Methanobacterium, N et anothermobacter, unclassified genera affiliated with Methanobacteriaceae, Methanoc. ¹Jeus, Methanolinea, and Methanosaeta, were existent in all of the eight blocks, and they were classed as the 'core microbial genera' in the study. The analysis of the relative abundances of core bacterial and archaeal genera in all blocks showed that Pseudomonas, unclassing d Methanobacteriaceae, and Methanothermobacter were dominant in XJQ, DGD, and HBB blocks, where the temperature at the sampling sites was moderate-to-high. In contrast, Arcobacter, Methanobacterium, Methanosaeta, Methanoculleus, and Methanolinea were predominant in XJT, HBM, and DQN blocks, where the temperature was low-to-moderate (Fig. S3). These results indicated that environmental variables should have tight relationship with the core microbial communities in the oilfield blocks.

Abiotic and biotic factors gradually and consistently shape the microbiota

To evaluate the interactions between the oilfield-derived microbial communities and the abiotic and biotic factors, we conducted canonical correlation analysis (CCA). For the analysis, the core

bacterial and archaeal genera were setup as the key biotic factors based on their high relative abundances in all samples. As shown in Table S4, temperature, depth, TOC, pH, AH, and ASP significantly influenced the microbial community structures (P < 0.05), four core archaeal genera (*Archaeoglobus, Methanothermobacter*, unclassified *Methanobacteriaceae*, and *Methanosaeta*) significantly influenced the bacterial microbial community structures (P < 0.05), while no core bacterial genera showed a significant influence on the archaeal communities.

When we compared the explanation degrees of abiotic and biotic variables to the bacterial and archaeal communities using both total and constrained variance, it was found that only 38% of the bacterial community was explained by abiotic factors, while 58% of the archaeal community was explained by abiotic factors. Moreover, the core archaeal general explained 32% of the bacterial community, while the core bacterial general explained only 17% of the archaeal community. The integration of abiotic and biotic influences showed the 67% of the bacterial communities were influenced by the integrated factors, which was much higher than the explanation degrees of either abiotic or biotic variables. In contrast to the bacterial communities, the explanation degrees of the integrated factors to the archaeal community if is were similar with those of the individual abiotic variables (Fig. S4). These results indicated that archaeal community structures should be mainly determined by the abiotic variables in pet oleum reservoirs, while the bacterial communities were influenced by the integrated abiot. Yariables and the core archaeal genera.

To analyze association betw on the abiotic or biotic variables and the abundances of microbial members in the water stamp, s, Spearman's correlation coefficients were calculated and visualized in Fig 3. It was found that abiotic factors, especially temperature and depth, showed close connections with the surrounding core archaea and provided favorable conditions for the growth of various microbes, indicating that the abiotic factors of temperature and depth and the biotic factors of core archaeal microbiota were the key nodes in the microbial communities of oil reservoirs. In the four blocks with low-to-moderate temperatures (XJT, XJQ, HBM, and DQN), the core archaeal genera with relatively high abundances, including *Methanosaeta*, *Methanolinea*, *Methanoculleus*, and *Methanobacterium*, were negatively correlated with temperature and depth. In the four blocks with moderate-to-high temperatures (DGD, HBB, SLZ, and LHA), the core archaea being predominant in the core microbiota, including *Methanothermobacter* and

unclassified *Methanobacteriaceae*, showed positively correlated with temperature and depth. For the remaining microbes in the correlation networks, they were directly or indirectly connected with temperature, depth, and the core archaea. For example, in XJT and HBM, the variable bacterial genera of *Geobacter*, *Smithella*, *Arcobacter*, *Hydrogenophaga*, *Azonexus*, *Thauera*, and *Erysipelothrix* showed significantly positive correlations with the core archaeal genera of *Methanoculleus*, *Methanolinea*, *Methanobacterium*, and *Methanosaeta*; In DGD, SLZ and LHA, the core bacterial genus of *Pseudomonas* and the variable bacterial genera of *Brevundimonas*, *Sphingomonas*, and *Sphingobium* showed significantly positive correlations with the presence of *Methanothermobacter*. These findings directed our exploration of the content of the content

Deterministic processes influence microbial community ssemuly in petroleum reservoirs

We analyzed the microbial community structure dissi vilar ties of water samples derived from different blocks using Bray-Curtis and Jaccard distances. As shown in Table S5, the compositions of the microbiota in the same block were more similar than those identified in different blocks, indicating that different blocks contained .vic obes that were specifically adapted to those blocks. We next conducted a null model an. vsis to assess whether the microbiota assembly was characterized by a deterministic or a sty chastic process. The permutational analysis of multivariate dispersions (PERMDISP) showed that the observed bacterial and archaeal β -diversities in each of the eight blocks were signin, analy different from the null random expectations (P < 0.05), suggesting that microbin community assemblage in the sampled petroleum reservoirs should be in a deterministic manner (Table S6). To measure the importance of deterministic processes for the assembly of archaeal and bacterial communities in petroleum reservoirs, we then analyzed the proportions of the deterministic processes to the archaeal and bacterial communities, respectively. As shown in Fig. 4, the archaeal communities exhibited higher proportions of deterministic processes (97.08±6.70%) than the bacterial communities (78.75±18.45%). The results indicated that abiotic factors exert a greater influence on the archaeal communities of petroleum reservoirs than the bacterial communities, which was in accordance with the CCA analysis results in Fig. S4.

Thermodynamic constraints on core archaeal microbiota

To determine the underlying mechanism by which the abiotic factors, such as temperature and

depth, influence the archaeal communities and then the bacterial communities in the sampled petroleum reservoirs, the thermodynamic constraints of methanogenic hydrocarbon degradation within the Archaea domain under various temperatures were calculated. The initial substrates of the microbial communities in oil reservoirs are the hydrocarbons. They are ultimately converted to methane (CH_4) through syntrophic associations between bacteria and archaea under the anoxic condition. Firstly, hydrocarbons are degraded to acetate and other short-chain volatile fatty acids by the fermenting bacteria through the hydrocarbon oxidation. Subsequently, acetate is converted to CH₄ either by consortia of acetate-oxidizing bacteria (AOB) and hydrogenotrophic methanogens (HMA) through the syntrophic ac tate oxidation linked to hydrogenotrophic methanogenesis or by aceticlastic methanogenes (AMA) through the directly aceticlastic methanogenesis (Fig 5a). As shown in F⁺, 50, the reactions performed by hydrogenotrphic and aceticlastic methanogens were b. h theoretically exergonic ($\Delta G < 0$) under standard conditions at all temperatures, while the hydrocarbon complete oxidation to produce CO₂ and H₂, the incomplete oxidation to produce acetate and H₂, and the acetate oxidation to CO₂ and H₂ were all energetically unfave at $(\Delta G>0)$ during the mesophilic and thermophilic digestion of various hydrocarbons, such as hexadecane (C16H34), hectane (C100H202) and benzene (C_6H_6) . This suggested that the fern e tig bacteria in petroleum reservoirs cannot be grown on hydrocarbons in the absence of .rethanogens. Compared with that in the mesophilic anaerobic digestion, H₂ diffusion efficiency from AOB to HMA was expected to increase, and acetate oxidation by AOB was net todynamically more favorable in the thermophilic process and at low H_2 partial pressure (Fig. 5c). Therefore, it was considered that methane production through the syntrophic acetate oxidation was more activity at high temperature. This inference was in agreement with the fact that the relative abundances of HMA listed in the core microbiota from our 50 samples of the eight blocks, including the archaeal genera of Methanobacterium, Methanothermobacter, unclassified Methanobacteriaceae, Methanoculleus, and Methanolinea, exhibited a significant positive correlation with temperature, whereas the relative abundances of AMA, mainly *Methanosaeta* spp., exhibited a significantly negative correlation with temperature (Fig. 5d). Thus, it was considered that the abiotic factors determined the archaeal community structures in petroleum reservoirs by the thermodynamic constraint-derived recruitment of the

core archaeal strains whose metabolism were thermodynamically favorable under special conditions.

Discussion

Abiotic factors drive core archaeal microbiota in petroleum reservoirs

The wells in oil reservoirs are essentially closed and harbor anoxic niches in which the major organic substrates are hydrocarbons. Microbes growing in such reservoirs should predominantly thrive on anaerobic hydrocarbon digestion, in which hydrocarbons are converted to acetate and H_2 and ultimately to biogas composed of CH₄ and CO₂. Since anaero ic hydrocarbon degradation is less exergonic than its aerobic mineralization [21], the bacteri 1 a. 1 archaeal microbes in oil reservoirs generally have very close and efficient interaction. Pr. viously, it was considered that the amount of energy released from either the reaction of 'active $\rightarrow CO_2 + CH_4$ ' or the reaction of $H_2+CO_2 \rightarrow CH_4 + H_2O'$ was insufficient to feed two mic. Les, and that the former reaction could only support the growth of AMA while the later c ne c uld feed HMA alone [22]. But the finding of several acetate-oxidizing bacteria in rece. 4 ec. 4 es demonstrated that the former reaction could be achieved through the efficient cooperatio. of AOB and HMA [23]. Schink suggested that the higher the temperature, the more evolutively the syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis cou.⁴ operate according to his thermodynamic calculation [24]. AMA should thermodynamically outcompete HMA in the same niche regardless of the temperature, because the free e ergy change goes to AMA from aceticlastic methanogenesis is equal to that shared by he s ntrophs of AOB and HMA through the syntrophic acetate oxidation. However, HMA are more often observed in extreme conditions compared to AMA [24]. AMA did operate at high temperature in some cases [16, 25-27], while HMA dominated at low temperature in some other cases [16, 28-30], but there is no systematic evidence showing to what extent temperature affects the occurrence of AMA and HMA in the same habitat. Here, we took water samples from 50 wells in eight oilfields throughout northern China, and measured the abiotic conditions and the microbial community compositions. By doing systematic analyses, it was found that the core AMA in the microbiota of Chinese petroleum reservoirs had a relatively high abundance at low-to-moderate temperatures and were negatively correlated with temperature, while the core HMA showed the opposite trend (Fig 5d). The Spearman's rank correlation testing

and the null model analysis proved that the core methanogenic community compositions were predominantly influenced by the abiotic factors of temperature and depth, and the core bacterial community structures were determined by the core methanogenic communities coupled with the geochemical factors (temperature, depth, TOC, pH, AH, and ASP) (Fig 3 and Fig 4). As far as we know, this is the first report showing the relationship between temperature and different types of methanogens in the same microbiota systematically.

Microbial correlations contribute to complex microbial networks

In this study, the null model analysis showed that microbial community assembly was shaped by deterministic factors, including geochemical conditions and species in eractions. Abiotic factors and core archaea sustain the network of microbiota in petroleum reservoirs.

In petroleum reservoirs, microbial members may for v syncrophic relationships, in which organisms positively, neutrally, or negatively affect the r pa tners, either by direct contact or by the cross-feeding of metabolites, resulting in mutualistic, commensal, or parasitical interactions [31, 32]. Previous studies have shown that Pseudomonas, Brevundimonas, Sphingomonas, Sphingobium, Hydrogenophaga, and Than re, which are hydrocarbon-oxidizing microorganisms, initiate hydrocarbon degradation in extroleum reservoirs [33]. After the initial oxidation, subsequent products such as alcohol, ...Id nydes, and fatty acids are excreted into the surrounding environment, affecting other microbes. Subsequently, fermentative bacteria (such as Geobacter and Smithella) take up and reasize compounds such as amino acids, sugars, long-chain fatty acids, lactate, butyrate, and proposite for the production of H_2 , CO_2 , and acetate. Methanogens (such as Methanobacterium, Me.' anothermobacter, Methanolinea, and Methanosaeta) then take up H_2 , CO_2 , acetate, and other small organic acids, resulting in the production of CH_4 [34]. Second, numerous microbial species may play similar roles in a single petroleum reservoir because crude oil is an important source of abundant carbon compounds. Our results showed that Thauera, Azonexus, Zoogloea, and Hydrogenophaga, affiliated with Betaproteobacteria, were positively correlated with Methanosaeta and Methanolinea and coexisted in the HBM and DQN blocks. Sphingomonas, Novosphingobium, Brevundimonas, and Rhizobium, affiliated with Alphaproteobacteria, were positively correlated with Methanothermobacter and coexisted in the DGD, SLZ, and LHA blocks. The existence of diverse microbes with similar functions may

increase the biodiversity of the microbiota. Based on the diversity-stability theory, high-diversity systems tend to be robust and resilient [35,36].

The dynamic pattern of the ecological relationships between different microbes includes symbiosis, competition, and parasitism [37]. Microbes show a trade-off between growth, reproduction, restoration, and resistance under conditions of limited availability of energy sources. Furthermore, microbes compete and cooperate to maintain growth and obtain energy. Our results indicate that abiotic factors, particularly temperature, depth, and the presence of the core archaea, lay the foundation for the microbial network. Furthermore, abundant microbial interactions enrich the microbial network and increase the stability and elasticity of the energy flow in petroleum reservoirs.

Feasibility and challenge of thermodynamic constraints in nucrobial community assembly

Our results of null model analysis indicated that the n. crob ota of the petroleum reservoirs was shaped by deterministic processes. Abiotic factors. perticularly temperature and depth, shaped the core archaeal microbiota, which are among the most important participants in the metabolic steps of the methanogenic degradation of petroleum hydrocarbons. Abiotic factors and the core archaeal microbiota then lay the foundation for u.e microbial food web.

A petroleum reservoir is a chemc synt) etically driven ecosystem characterized by a relatively simple carbon source and stable g, ochemical conditions compared with those in the soil and ocean [4, 38]. The methanogenic ⁴egradation of crude oil hydrocarbons shows relatively clear thermodynamic constraints [39, 40]. In our study, the change in the Gibbs free energy, based on thermodynamic reaction, indicated that HMAs preferred high-temperature petroleum reservoirs, whereas AMAs and HAMA preferred low-temperature petroleum reservoirs. This result was consistent with the abundances of the functional archaea determined across our samples using 16S rRNA sequencing (Fig. 5). This result is in agreement with previous findings showing that HMAs are transformed to AMAs under high CO₂ concentrations, which is more thermodynamically favorable [11]. Our results suggest that microbial community assembly is thermodynamically driven.

The elucidation of the intrinsic assembly mechanism is a central goal in ecology. However, complex multifactor, multivariate, and multilevel ecosystems mask this underlying mechanism.

The cryosphere of the Earth is a simple ecosystem that includes sea ice, glacial, and subglacial habitats, with a reduced content of organic matter inhabited by diverse organisms. In sea ice and supraglacial habitats, sunlight penetrates the ice. Photoautotrophy, mostly contributed by sea-ice diatoms, serves as the basis for complex food webs, whereas in subglacial habitats, chemoautotrophy is observed [41,42]. The overwhelming majority of microbes in these environments are difficult to culture and model. Therefore, we encountered obstacles in trying to determine the energy flow of these microbes. For these reasons, assessing microbial community assembly based on thermodynamic constraints remains a key challenge in microbial ecology.

Conclusion

To date, little is known about the underlying mechanism of microb al community assembly. In this study, the bacterial and archaeal communities in eight Chinese petroleum reservoirs were comprehensively investigated under heterogeneous generation conditions to identify the intrinsic mechanism of microbial community asser ib'y. In the petroleum reservoirs, abiotic factors (temperature, depth, TOC, pH, AH, and (LD?) significantly influenced the microbiota. Abiotic factors influenced the archaeal commun. ies more than the bacterial communities. The combination of abiotic factors, especially temperature and depth, and the core archaeal genera, including Archaeoglobus, Met. ~. lobacterium, Methanothermobacter. unclassified Methanobacteriaceae, Methan men. Jovorans, Methanoculleus, Methanosaeta and Methanolinea, lay the foundation for the bac crial community structures. Null model analysis reflected that deterministic processes shiped the microbial community structures in Chinese petroleum reservoirs. The correlat on coefficients between the core archaea relative abundances and temperatures indicated that microbial community assembly in these deep terrestrial ecosystems tended toward a thermodynamically favored state. These findings will lead to new horizons for exploring the assembly mechanisms of various ecological habitats.

Materials and Methods

Sampling and analysis of the physico-geochemical characteristics of the water samples

From 2009 to 2010, a total of 50 water samples collected from eight injection wells and 42 production wells of eight water-flooding Chinese oil reservoirs were collected. The eight sampling blocks were XJT (T) and XJQ (Q) in Xinjiang Province, HBM (M) and HBB (B) in Inner 13

Mongolia Province, DQN (N) in Heilongjiang Province, LHA (A) in Jilin Province, DGD (D) in Tianjin Province and SLZ (Z) in Shandong Province. Physical characteristics of the petroleum reservoirs, such as permeability (PER), porosity (POR), temperature, and depth, were recorded. The distribution of the sampling sites and detailed information on the samples are shown in Fig. 1 and Table S2. All samples were immediately transported to the laboratory, centrifuged at 500×g to discard the precipitates, and then the upper-phase crude oil and the lower-phase solutions for each sample were separately stored at -80°C for further analysis. Soon after all 50 water samples were there, the chemical indices of floating crude oil, including sulf rr (S), nitrogen (NI) and the contents of four subfractions (wt/wt) (saturated hydrocarbons (SF.), a. pmatic hydrocarbons (AH), nonhydrocarbons (NH), and asphaltene (ASP)) were determined. Meanwhile, the chemical characteristics of the injection water and production water, and ste pH, total organic carbon (TOC), and total salinity degree (TSD), which included an 'a ste pH, total organic carbon (Na⁺, K⁺, Mg²⁺, and Ca²⁺), were also analyzed. Al' enalyses were performed according to the methods of *Tang* et al. [16].

Microbe collection and DNA extraction

For the microbiota composition analysis, microbes from the water samples were collected soon after they arrived at the laboratory cy filtering approximately 200-250 ml samples through 0.22-μm hydrophilic membrar filters (Φ47 mm, Millipore, USA). DNA was extracted using the FastDNA[®] Spin Kit for Sc⁻¹ (M · Biomedicals, Cleveland, USA) according to the manufacturer's instructions and wes quantified using a spectrophotometer (Pharmaspec UV-1700, Shimadzu, Kyoto, Japan). The extr cted DNA mixture from every sample was stored at -80°C for further operation.

Sequencing library construction and pyrosequencing

After DNA mixtures in each of the 50 water samples were obtained, they were processed for the amplicon 454 pyrosequencing. The first step was DNA library construction. For bacterial community analysis, the ~192bp V3 region of the 16S rRNA gene was amplified with a bacterial universal primer pair 341F/533R [43]. For archaeal community analysis, nested PCR was performed to amplify the V3-V6 region (approximately 709 bp). The first primer pair was 109F/1386R, followed by 339F/1048R [44]. The primers 341F, 533R, and 339F were linked with

454 Life Sciences adaptor sequences, a unique 10-bp error-correcting Golay barcode, and a 'T' linker sequence that was inserted between the barcode and primer, while primer 1048R only harbored the adapter sequence. Three biological replicates were performed for each experiment. All amplicons were visualized using 2% (w/v) agarose gels (TaKaRa, Japan) and purified using a DNA gel extraction kit (BioTek, China). Purified amplicons of the same sample were mixed in equimolar ratios, followed by sequencing on the 454 Life Sciences Genome Sequencer FLX Titanium platform (Shanghai Majorbio Bio-Pharm Technology Co., Ltd. and TEDA Institute of Biological Sciences and Biotechnology, Nankai University, China). The obtained nucleotide raw data containing the basecalled sequences and corresponding quality moves of or all reads were saved in SFF (standard flowgram format) files.

Pyrosequencing data availability

The SFF files obtained from the 454 sequencer were converted into FASTQ format using Mothur 1.10.2, and then sequences from different samples ... re discriminated according to the barcodes. The sequences in the distinguished FASTQ fills were termed as valid sequences. For bacterial community analysis, valid sequences were or imized for the preferences of both the forward and reverse primers, allowing up to two restantches, with perfect primer and barcode sequence matching, no ambiguous base calle, a 00-bp minimum sequence length, and more than 30 sequences. For archaeal contruity analysis, valid sequences were processed using QIIME2-2018.11 [45] to obtain optimized sequences, which removed ≤ 200 bp and ≥ 1000 bp sequences, ambiguous base. exceeding 6 bp, a missing qual score or a mean qual score below 25, max homopolymer run exceeding 6 bp, no mismatches between primers, and uncorrected barcodes. All optimized sequences were compared by using BLASTN with a reference database based on the SILVA database (version 106) and then clustered into operational taxonomic units (OTUs). OTUs were defined according to a farthest neighbor Jukes-Cantor distance of 0.03 and assigned taxonomically using the Ribosomal Database Project (RDP) Naive Bayes classifier. The Shannon-Wiener, Simpson, Chao1, and Good's coverage indices were estimated to determine the diversity of the bacterial and archaeal communities. The sff files were deposited at DDBJ (http://www.ddbj.nig.ac.jp) under the accession numbers listed in Table S2.

Processing of statistical analyses

Statistical analyses were performed using R software (v.3.4.2, R Project for Statistical Computing). To analyze the heterogeneity of the geochemical conditions, including PER, POR, temperature, depth, TSD, TOC, pH, S, NI, SH, AH, NH, and ASP, in different petroleum reservoirs, principal component analysis (PCA) was performed on a geochemical data matrix using the *pca2d* function in the *pca3d* package of R. The *cor* and *cor.test* functions in the stats package of R were used to calculate and test Spearman's rank correlations between geochemical conditions. A Spearman's correlation coefficient (rho, $|\rho|$) of ≥ 0.4 and P < 0.05 were considered statistically significant [46].

Based on the frequency of the occurrence of OTUs or genera, the microbes in a single block were divided into three groups: (I) OTUs or genera present in >70% or production water samples in one block were grouped as core OTUs or genera; (II) OTUs or genera present in at least two but <70% of production water samples in one block were grouped as variable OTUs or genera; and (III) OTUs or genera present only in one production w. er si mple were grouped as unique OTUs or genera [47]. Using a similar calculation method the core, variable, and unique microbes in all blocks were summarized. A Venn diagram base, on OTU levels was used to compare the core and variable microbes in the injection and production water samples.

The abiotic and biotic influences on the microbiota were tested using the *envfit* function in the *vegan* package of R based on canonic d correlation analysis (CCA) [48]. P < 0.05 based on 999 permutations indicated the signin mance of geochemical conditions. To more specifically identify the relationships between geochemical conditions and among core and variable microbes in different blocks, the ρ *e* id r values of Spearman's rank correlations were calculated. All possible Spearman's rank correlations ($|\rho| \ge 0.4$, P < 0.05) were considered valid influencing events, and the topology of the network was described in Cytoscape 3.2.1. The nodes in the reconstructed network represent the geochemical conditions and core-variable genera, whereas the lines correspond to a strong and significant correlation between nodes. Path lines document only the positive and negative correlations, regardless of connectivity (ρ). Node size roughly describes the relative abundance of core microbes.

 β -diversity (Bray-Curtis dissimilarity and Jaccard's dissimilarity) represents compositional variations among communities across various spatial scales and provides insights into mechanisms of community assembly [7, 49]. We calculated the dissimilarity (1-similarity) of the microbiota

based on OTU levels using the *vegdist* function in the *vegan* package of R. In the null mode analysis, microbiota assembly via a stochastic process, in which the microbial composition is not regulated by abiotic and biotic factors, was set as the null model. Permutational analysis of multivariate dispersions (PERMDISP) was used to discern whether differences in similarity in the same block were different from the null expectation. The proportions of deterministic and stochastic processes provided a quantitative estimation of the extent of niche-based deterministic selection in shaping the community composition and structure [7]. The analysis of the correlations between the microbiota and geochemical conditions was conducted with a multiple regression model using the *lm* function in the stats package of R [4].

Evaluating the thermodynamics of methanogenic hydrocarkan digradation routes

The degradation of either saturated hydrocarbons ($C_{16}H_{34} \approx d C_{100}H_{202}$) or aromatic hydrocarbons (C_6H_6) are divided into the following two steps.

Step 1: Hydrocarbon oxidation has three types of coctions:

(I) Complete oxidation:

$$4C_{x}H_{y} + 8xH_{2} \rightarrow 4xCO_{2} + (8x + 2y)H_{2} \qquad (1)$$

(II) Incomplete oxidation to produce active:

$$4C_{x}H_{y} + (4x - y)H_{2}() - yCO_{2} \rightarrow (2x + y/2)CH_{3}COOH$$
 (2)

(III) Incomplete oxidation to product acetate and H₂:

$$4C_{\lambda}H_{\nu} - 4xH_2O \rightarrow 2xCH_3COOH + 2yH_2$$
 (3)

Step 2: Acetate deg notion to methane has two types of reactions:

(I) Syntrophic acetate Unidation (acetate oxidation + hydrogenotrophic methanogenesis):

$$(2x+y/2)CH_3COOH + (4x+y)H_2O \rightarrow (4x+y)CO_2 + (8x+2y)H_2$$
 (4)

$$(8x+2y)H_2 + (2x+y/2)CO_2 \rightarrow (2x+y/2)CH_4 + (4x+y)H_2O$$
 (5)

(II) Aceticlastic methanogenesis:

$$(2x+y/2)CH_3COOH \rightarrow (2x+y/2)CO_2 + (2x+y/2)CH_4$$
 (6)

The Gibbs free energy of each chemical reaction was calculated according to the study by *Dolfing* et al., and temperature corrections for ΔG^0 were performed using the Gibbs-Helmholtz equation: $\Delta G_{Tact}^{0} = \Delta G_{Tref}^{0} \cdot \left(\frac{T_{act}}{T_{ref}}\right) + \Delta H_{Tref}^{0} \cdot \frac{T_{ref} - T_{act}}{T_{ref}}$, with the temperature in Kelvin; $T_{ref} = 298.15 \text{ K} [39, 40].$

Acknowledgements

The study was supported by the National Key R&D Program of China (2018YFA0902100 and 2018YFA0902103 to XLW), the National Natural Science Foundation of China (31770120 to XLW), and Open Funding Project of the State Key Laboratory of Biochemical Engineering (No. 2020KF-05).

Meanwhile, we would like to thank Dr. Yingying Yao at School or ¹uman Settlements and Civil Engineering, Xi'an Jiaotong University for illustration preparation and analysis.

Solution of the second second

References

- 1. Bertrand JC, Caumette P, Lebaron P, Matheron R, Normand P, Sime-Ngando T. 2015. Environmental microbiology: Fundamentals and applications. Springer, Dordrecht, Holland.
- Green JL, Bohannan BJ, Whitaker RJ. 2008. Microbial biogeography: from taxonomy to traits. Science 320: 1039-1043.
- Stearns JC, Lynch MD, Senadheera DB, Tenenbaum HC, Goldberg MB, Cvitkovitch DG, Croitoru K, Moreno-Hagelsieb G, Neufeld JD. 2011. Bacterial biogeography of the human digestive tract. Sci Rep 1: 170.
- 4. Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Shar C, Jaluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel k, Osting E, Nouhra E, Njouonkou AL, Nilsso, J.H, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson K Kol out P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo L, Greslebin A, Grelet G, Gent J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, Kesel AD, Dang T, Chen A, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K. 2014. Global divertity and geography of soil fungi. Science 346(6213): 1256688.
- Caruso T, Chan Y, Lacar DC, Lau MC, McKay CP, Pointing SB. 2011. Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. ISME J 5. 14 06-1413.
- 6. Stegen JC, Lin X, Ko lopka AE, Fredrickson JK. 2012. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J 6: 1653-1644.
- 7. Zhou JZ, Deng Y, Zhang P, Xue K, Liang YT, Van Nostrand JD, Yang Y, He Z, Wu L, Stahl DA, Hazen TC, Tiedje JM, Arkin AP. 2014. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc Natl Acad Sci USA 111: E836-E845.
- Louca S, Jacques SMS, Pires APF, Leal JS, Srivastava DS, Parfrey LW, Farjalla VF, Doebeli M.
 2016. High taxonomic variability despite stable functional structure across microbial communities. Nat Ecol Evol 1(1): 15.
- 9. Delattre H, Desmond-Le Quemener E, Duquennoi C, Filali A, Bouchez T. 2019. Consistent

microbial dynamics and functional community patterns derived from first principles. ISME J 13: 263-276.

- Leng L, Yang P, Singh S, Zhuang H, Xu L, Chen W, Dolfing J, Li d, Zhang Y, Zeng H, Chu W, Lee P. 2018. A review on the bioenergetics of anaerobic microbial metabolism close to the thermodynamic limits and its implications for digestion applications. Bioresour Technol 247: 1095-1106.
- Mayumi D, Dolfing J, Sakata S, Maeda H, Miyagawa Y, Ikarashi M, Tamaki H, Takeuchi M, Nakatsu CH, Kamagata Y. 2013. Carbon dioxide concentration dictates alternative methanogenic pathways in oil reservoirs. Nat Commun 4: 1999
- 12. Head IM, Jones DM, Larter SR. 2003. Biological activity in the duep subsurface and the origin of heavy oil. Nature 426: 344.
- 13. Jones DM, Head IM, Gray ND, Adams JJ, Rowa. AK Aitken CM, Bennett B, Huang H, Brown A, Bowler BF, Oldenburg T, Erdmann M Larter SR. 2008. Crude-oil biodegradation via methanogenesis in subsurface petroleu: reservoirs. Nature 451(7175): 176-180.
- 14. Kotlar HK, Lewin A, Johansen J, Thure Holst M, Haverkamp T, Markussen S, Winnberg A, Ringrose P, Aakvik T, Ryeng E, Jakobsen K, Drabløs F, Valla S. 2011. High coverage sequencing of DNA from microprijar isms living in an oil reservoir 2.5 kilometres subsurface. Environ Microbiol Rep 3(6). 574-681.
- Lenchi N, İnceoğlu Ö, Keubouche-Gana S, Gana ML, Llirós M, Servais P, García-Armisen T.
 2013. Diversity of murobial communities in production and injection waters of Algerian oilfields revealed by 16S rRNA gene amplicon 454 pyrosequencing. PLoS One 8(6): e66588.
- 16. Tang YQ, Li Y, Zhao JY, Chi CQ, Huang LX, Dong HP, Wu X. 2012. Microbial communities in long-term, water-flooded petroleum reservoirs with different in situ temperatures in the Huabei Oilfield, China. PLoS One 7(3): e33535.
- Yamane K, Hattori Y, Ohtagaki H, Fujiwara K. 2011. Microbial diversity with dominance of 16S rRNA gene sequences with high GC contents at 74 and 98 °C subsurface crude oil deposits in Japan. FEMS Microbiol Ecol 76: 220-235.
- Shelton JL, Akob DM, McIntosh JC, Fierer N, Spear JR, Warwick PD, McCray JE. 2016. Environmental drivers of differences in microbial community structure in crude oil reservoirs

across a methanogenic gradient. Front Microbiol. 7: 1535.

- Kim DD, O'Farrell C, Toth CRA, Montoya O, Gieg LM, Kwon T, Yoon S. 2018. Microbial community analyses of produced waters from high-temperature oil reservoirs reveal unexpected similarity between geographically distant oil reservoirs. Microb Biotechnol 11(4): 788-796.
- 20. Sierra-Garcia IN, Belgini DRB, Torres-Ballesteros A, Paez-Espino D, Capilla R, Neto EVS, Gray N, de Oliveira VM. In depth metagenomic analysis in contrasting oil wells reveals syntrophic bacterial and archaeal associations for oil biodegradation in petroleum reservoirs. The Science of The Total Environment. 715: 136646.22. Grabewski A, Nercessian O, Fayolle F, Blanchet D, Jeanthon C. 2005. Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54(3): 427-443.
- 21. Schink B. 1997. Energetics of syntrophic cooperatic v in) nethanogenic degradation. Microbiol Mol Biol Rev 61(2): 262-280.
- 22. Zeikus JG. 1977. The biology of methanoge. ic bacteria. Bacteriol Rev. 41: 514-541.
- 23. Gieg LM, Fowler SJ, Berdugo-Clav_{1,7} C. 2014. Syntrophic biodegradation of hydrocarbon contaminants. Curr Opin Biotechn.¹ 27: 21-29.
- 24. Pasalari H, Gholami M, Rezaee A E rafili A, Farzadkia M. 2020. Perspectives on microbial community in anaerobic dig. stion with emphasis on environmental parameters: a systematic review. Chemosphere doi. 10.1016/j.chemosphere.2020.128618.
- 25. Dyksma S, Jansen L, Gallert C. 2020. Syntrophic acetate oxidation replaces acetoclastic methanogenesis duiing thermophilic digestion of biowaste. Microbiome 8: 105.
- 26. Mayumi D, Mochimaru H, Yoshioka H, Sakata S, Maeda H, Miyagawa Y, Ikarashi M, Takeuchi M, Kamagata Y. 2011. Evidence for syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in the high-temperature petroleum reservoir of Yabase oil field (Japan). Environ Microbiol 13: 1995-2006.
- 27. Grabowski A, Nercessian O, Fayolle F, Blanchet D, Jeanthon C. 2005. Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54(3): 427-443.
- 28. Kryachko Y, Dong X, Sensen CW, Voordouw G. 2012. Compositions of microbial

communities associated with oil and water in a mesothermic oil field. Anton Van Leeuw 101: 493-506.

- 29. Sakai S, Ehara M, Tseng I-C, Yamaguchi T, Bräuer SL, Cadillo-Quiroz H, Zinder SH, Imachi H. 2012. *Methanolinea mesophila* sp. nov., a hydrogenotrophic methanogen isolated from rice field soil, and proposal of the archaeal family Methanoregulaceae fam. nov. within the order Methanomicrobiales. Int J Syst Evol Microbiol 62(Pt 6): 1389-1395.
- 30. Mori K, Harayama S. 2011. Methanobacterium petrolearium sp. nov. and Methanobacterium ferruginis sp. nov., mesophilic methanogens isolated from salty environments. Int J Syst Evol Microbiol 61: 138-143.
- Morris BE, Henneberger R, Huber H, Moissl-Eichinger C. 2013. Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev 37. 384-406.
- 32. Little AE, Robinson CJ, Peterson SB, Raffa KF, H ndehman J. 2008. Rules of engagement: interspecies interactions that regulate microbiol communities. Annu Rev Microbiol 62: 375-401.
- van Beilen JB, Funhoff EG. 2007. A kane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74(1): 13-21.
- 34. Muyzer G, Stams AJ. 2008. The cold gy and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6: 441-454
- 35. McCann KS. 2000. The diversity-stability debate. Nature 405: 228-233.
- 36. Mazancourt C, Isbeit F, Larocque A, Berendse F, Luca E, Grace JB, Haegeman B, Wayne Polley H, Roscher C, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Loreau M. 2013. Predicting ecosystem stability from community composition and biodiversity. Ecol Lett 16(5): 617-625.
- Grossart H-P, Riemann L, Azam F. 2001. Bacterial motility in the sea and its ecological implications. Aquat Microb Ecol 25: 247-258.
- Larsen P, Dai Y, Collart FR. 2015. Predicting bacterial community assemblages using an artificial neural network approach. Methods Mol Biol 1260: 33-43.
- Dolfing J, Larter SR, Head IM. 2008. Thermodynamic constraints on methanogenic crude oil biodegradation. ISME J 2: 442-452.

- Dolfing J, Xu A, Gray ND, Larter SR, Head IM. 2009. The thermodynamic landscape of methanogenic PAH degradation. Microb Biotechnol 2: 566-574.
- 41. Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ. 2015. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 13: 677.
- 42. Hellweger FL, van Sebille E, Fredrick ND. 2014. Biogeographic patterns in ocean microbes emerge in a neutral agent-based model. Science 345: 1346-1349.
- 43. Koike S, Krapac IG, Oliver HD, Yannarell AC, Chee-Sanford JC, Aminov RI, Mackie RI. 2007. Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-y. 3r period. Appl Environ Microb 73(15): 4813-4823.
- 44. Jeyanathan J, Kirs M, Ronimus RS, Hoskin SO, Janse n Fri. 2011. Methanogen community structure in the rumens of farmed sheep, cattle nd ed deer fed different diets. FEMS Microbiol Ecol 76: 311-326.
- 45. Bolyen E, Rideout JR, Dillon MR, Bokuli h NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Lei Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo Podríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Lu al DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gubons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Yuuenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KL Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille N. GI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG. 2019. Reproducible, interactive, scalable and extensible microbiome data science using

QIIME 2. Nat Biotechnol 37: 852-857.

- 46. Barberán A, Bates ST, Casamayor EO, Fierer N. 2012. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6: 343-351.
- 47. Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N, Petez T, Rodrigo A, Schupp PJ, Vacelet J, Webster N, Hentschel U, Taylor MW. 2012. Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6(3): 564-576.
- 48. Werner JJ, Knights D, Garcia ML, Scalfone NB, Smith S, Yarasheski K, Cummings TA, Beers AR, Knight R, Angenent LT. 2011. Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc Natl Acad Sci USA 108(10): 4158-4163.
- Chase JM. 2010. Stochastic Community Assembly 'ausos Higher Biodiversity in More Productive Environments. Science 328: 1388-1391

SULLAR

Figure Legends

Figure 1. Geographical distribution of eight oil reservoir blocks in China according to ArcGIS. Fifty water samples from 8 injection wells and 42 production wells were obtained from eight Chinese oilfields (XJT, XJQ, HBM, DQN, DGD, HBB, SLZ, and LHA). The names of the samples taken from the injection and production wells, as well as the physical and geochemical conditions of samples from each oilfield are listed under the map. * PER, Permeability; POR, Porosity; WC, Water content; TSD, Total salinity degree; TOC, Total organic carbon; S, Sulfur; N, Nitrogen; SH, Saturated hydrocarbon; AH, Aromatic hydrocarbon; NH, Non-hydrocarbon; SAP, Asphaltene.

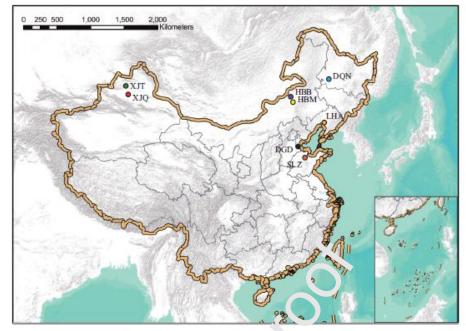
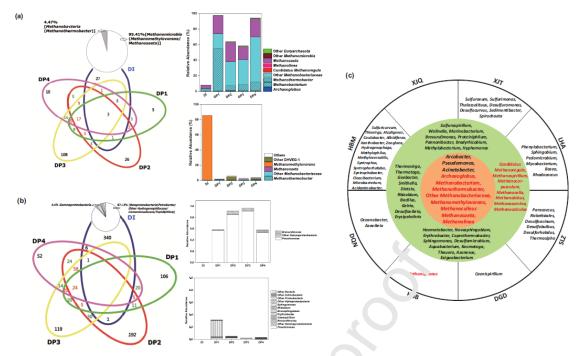

Figure 2. Identification of the core microbial communities in Chinese petroleum reservoirs. (a) Venn diagram showing the amounts of block-level common and unique bacterial $OTU_{0.03}$ between the injection and production water samples in the I GD block, the pie diagram showing the bacterial composition of injection water, and histograms showing the relative abundances of the core (top) and variable (bottom) bacterial genera in the DGD block. (b) Venn diagram showing the amounts of block-level common and united earchaeal $OTU_{0.03}$ of samples collected from DGD, the pie diagram showing the archaeal composition of injection water, and histograms showing the relative abundances of the core (top) and variable (bottom) and variable (bottom) archaeal genera in DGD. (c) Core microbial communities in eight Chinese petroleum reservoirs, in which the core bacteria are indicated in pink, variable b_{ac} terna in green, and unique bacteria in white (black font), while archaea are indicated in the form the terroleum reservoirs.

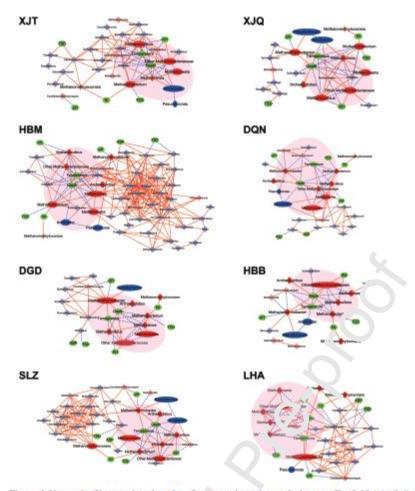
Figure 3. Network of L teractions based on Spearman's rank correlation test (P < 0.05, $|\rho| \ge 0.4$), among the core-variable genera in each block and under the indicated geochemical conditions. The nodes represent the geochemical conditions (green), core archaea (red), variable archaea (pink), core bacteria (blue), and variable bacteria (lavender). Only core bacteria and core archaea were present in relative abundance. The path lines correspond to a strong and significant correlation between nodes (P < 0.05), shown by positive (red solid line) and negative (blue dashed line) correlations, regardless of connectivity (ρ).

Figure 4. Proportions of deterministic and stochastic processes of bacterial and archaeal communities in eight blocks.

Figure 5. Thermodynamics of hydrocarbon anaerobic digestion by the oil reservoir-derived microbial communities. (a) The conceptual framework showing the bioprocessing from hydrocarbon to methane (CH₄) under the anoxic condition; (b) The standard molar changes in Gibbs free energy (Δ G) in hydrocarbons (hexadecane, C₁₆H₃₄; heactane, C₁₀₀H₂₀₂; benzene, C₆H₆) complete and incomplete oxidation, acetate oxidation, hydrogenotrophic methanogenesis, and acetotrophic methanogenesis under a temperature range of 0–160°C at pH8; (c) Δ G of acetate oxidation under different H₂ concentrations and temperatures; (d) Relationships between the relative abundances of hydrogenotrophic or aceticlastic methanogenes (HMA or AMA) and temperature. HMA representing *Methanothermobacter*, other *Methanosaeta*.


Solution

Oil Field Injection Well Production Well		O XJT	O XJQ	DGD	O SLZ	► "QN	• нвв	Онвм	O LHA
		T1 TP1, TP2, TP3, TP4	QI QP1, QP2, QP3, QP4, QP5	DI DP1, DP2, DP3, DP4	ZI ZP1, ZP2, ZP3, . `4 ZP5, ZP	NI .P1, NP2, NP3, NP4	BI BP1, BP2, BP3, BP4, BP5, BP6, BP7	MI MP1, MP2, MP3, MP4, MP5, MP6, MP7	AI AP 1, AP2, AP3, AP4, AP5
Abiotic Characte ristics*	POR	0.21	0.17	0.33	03	0.3	0.19	0.22	0.25
	Temperature (°C)	20.6	32	58	60	44.6	58.4	37	70
	Depth (m)	480-515	1088	1563.3~165.	120-1360	1155~1207	1446~1539	790-830	1652~2176
	Flooding years (y)	≥40	≥39	et 44.	>21	≥ 50	>13	≥25	≥ 19
	WC	0.9	0.62-0.92	0.96	0.9	0.93	0.89	0.92	0.82-0.99
	TSD (mg/L)	5030.96±818.64	5126.30±914.71	375. 11.71	6910.00±599.48	1956.80±231.00	1468.36±120.56	1126.07±163.46	999.45±84.29
	TOC (mg/L)	74.24±22.00	40.55 9.37	40.55m. '7	98.76±41.27	97.76±16.62	112.18±35.74	91.86±33.47	6657.00±1539.60
	pН	8.22±0.35	8.26±0.15	7.97±0.22	7.98±0.33	8.03±0.24	\$77±0.38	8.38±0.18	7.50±0.01
	S (%)	0.14±0.06	0.0 + 0.0	928±0.01	2.82±0.20	0.11=0.01	0.18±0.03	0.19±0.01	0.05±0.01
	NI(%)	0.24±0.07	0.18±0′	0	0.54±0.11	0.15±0.01	0.17±0.01	0.38±0.01	0.08±0.01
	SH (%)	65.46±4.55	61.8°E 88		28.23±11.99	46.22±0.17	44.25±0.46	38.94±0.81	45.60±0.87
	AH (%)	15.53±3.90	15.8%±2.33	3185±0.20	34.48±5.14	16.80±1.07	27.86±0.34	17.77±3.99	5.45±2.54
	NH (%)	13.87±3.23	1,49±1. *	2271±3.98	24.40±6.72	25.60±0.18	16.48±1.26	24.47±1.10	14.06±2.06
	ASP (%)	5.14±2.77	76±1.05	615±1.05	12.89±0.80	11.39±1.05	11.42±1.38	18.83±3.71	34.90±.040


*PER: Permeability: POR: Porosity: WC: Water cs., "ht TSD: a otal salinity degree; TOC: Total organic carbon; S: Sulfur; N: Nitrogen; SH: Saturated hydrocarbon; AH: Aromatic hydrocarbon; NH: Non-hydrocarbon; SAP: Asphaltene.

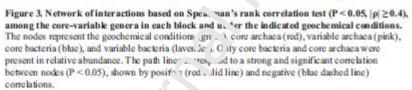

Figure 1. Geographical distrik. Hon of eight oil reservoir blocks in China according to ArcGIS. Fifty water samples from 8 injection wells and 42 production wells were obtained in the reservoir blocks in China according to ArcGIS. Fifty water samples from 8 injection wells and 42 production wells were obtained in the reservoir blocks in China according to ArcGIS. Fifty water samples from 8 injection wells and 42 production wells were obtained in the reservoir blocks in China according to ArcGIS. Fifty water samples from 8 injection wells and experimental production wells, as well as the physical and geochemical conditions of samples from each oilfield are listed under the map. PEL Permy ability; POR, Porosity; WC, Water content; TSD, Total salinity degree; TOC, Total organic carbon; S, Sulfar, N, Nitrogen; SH, "Atta and hydrocarbon; AH, Aromatic hydrocarbon; NH, Non-hydrocarbon; SAP, Asphaltene.

Figure 2. Identification of the core microbial communities in Chinese petroleum reservoirs. (a) Venn diagent with showing the amounts of block-level common and unique bacterial OTU_{0,00} between the injection and production water samples in the DGD block, the pie diagram showing the "veter". I composition of injection water, and histograms showing the relative abundances of the core (top) and variable (bottom) bacterial genera in the DGD block, (b) Venn diagent water, and water, and histograms showing the amounts of block-level common and unique archaeal OTU_{0,00} samples collected from DGD, the pie diagram showing the achaeal composition of injection ater, and ... Joograms showing the relative abundances of the core (top) and variable (bottom) archaeal genera in DGD. (c) Core microbial communities in eight Chinese water are indicated in pink, variable bacteria in green, and unique bacteria in white (black font), while archaea are indicated in red (nt ir aff. rent petroleum reservoirs.

o show

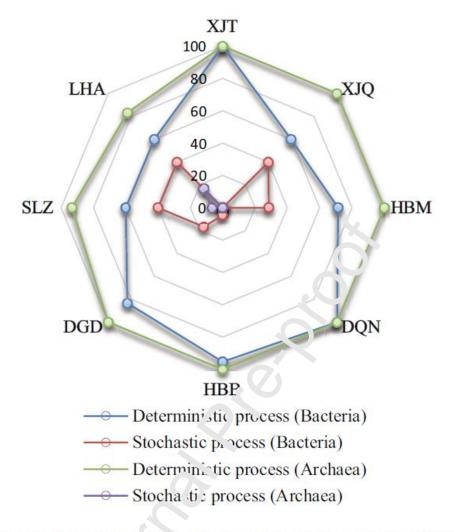


Figure 4. Proportions c_{s}^{s} deterministic and stochastic processes of bacterial and archaeal communities n_{s} eight blocks.

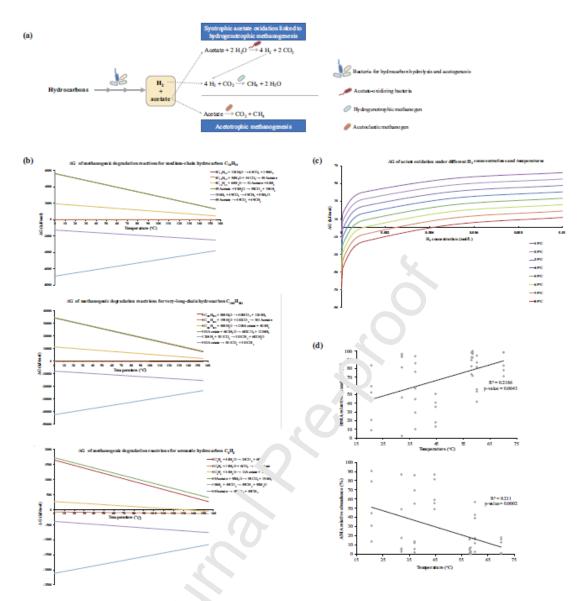


Figure 5. Thermodynamics of hydrocarbon and $\$ bic dg $\$ ion by the oil reservoir-derived microbial communities. (a) The conceptual framework showing the bioprocessing from hydrocarbon to methane (CH₄) under the ano₁ \sim dition; (b) The standard molar changes in Gibbs free energy (Δ G) in hydrocarbons (hexadecane, C₁₄H₄₅; heactane, C₁₆H₄₅; heactane, C₁₆H₄₆; heactane, C₁₆; heactane, C₁₆; heactane, C₁₆; heactane, C₁₆; heactane, C₁₆; heactane, C₁₆; heactane, C_{16}; heacta

Credit Author Statement

Jie-Yu Zhao: Investigation, Formal analysis, Writing-original draft

Bing Hu: Validation, Visualization, Writing-Review & Editing, Funding acquisition

Jan Dolfing: Data curation, Writing-Review & Editing

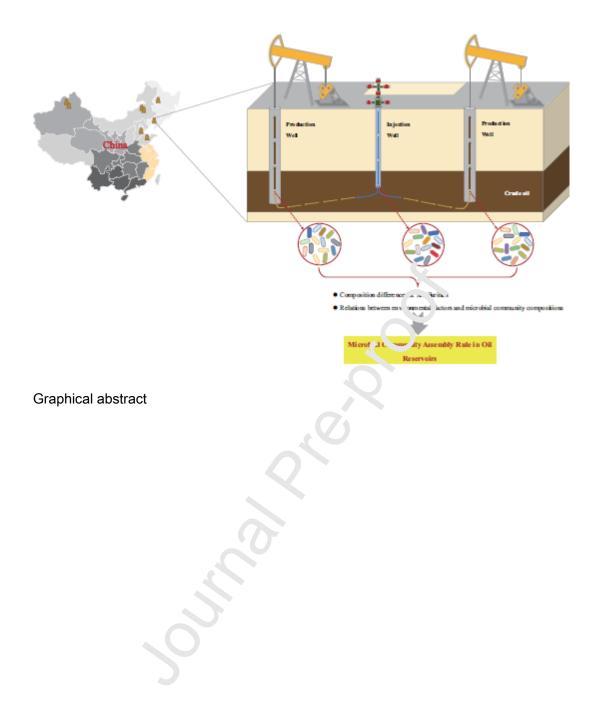
Yan Li: Conceptualization

Yue-Qin Tang: Writing-Review & Editing

Yiming Jiang: Software

Chang-Qiao Chi: Resources

Jianmin Xing: Writing-Review & Editing


Yong Nie: Project administration, Supervision, Wrang-Review & Editing

Xiao-Lei Wu: Supervision, Writing-Review & Eduing, Funding acquisition

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal

relationships that could have appeared to influence the work reported in this paper.

Highlights:

- ✓ A core microbiota was present in all sampled wells of Chinese oilfield.
- \checkmark The core bacterial compositions were affected by archaea and abiotic factors.
- \checkmark The core archaeal community structures were influenced by abiotic factors.
- ✓ Thermodynamic constraints were the key for the microbiota assembly in oilfield wells.