37 research outputs found

    An easy iris center detection method for eye gaze tracking system

    Get PDF
    Iris center detection accuracy has great impact on eye gaze tracking system performance. This paper proposes an easy and efficient iris center detection method based on modeling the geometric relationship between the detected rough iris center and the two corners of the eye. The method fully considers four states of iris within the eye region, i.e. center, left, right, and upper. The proposed active edge detection algorithm is utilized to extract iris edge points for ellipse fitting. In addition, this paper also presents a predicted edge point algorithm to solve the decrease in ellipse fitting accuracy, when part of the iris becomes hidden from rolling into a nasal or temporal eye corner. The evaluated result of the method on our eye database shows the global average accuracy of 94.3%. Compared with existing methods, our method achieves the highest iris center detection accuracy. Additionally, in order to test the performance of the proposed method in gaze tracking, this paper presents the results of gaze estimation achieved by our eye gaze tracking system

    Exploring the influence of vegetation cover, sediment storage capacity and channel dimensions on stone check dam conditions and effectiveness in a large regulated river in MĂ©xico

    Get PDF
    Check dams are widely used for soil conservation at the watershed scale. When structurally sound, these engineering control works retain sediment as planned. However, there is limited information describing the influence of site characteristics on post-construction condition including structural stability and sediment retention capacity. More specifically, the effects of channel morphology, check dam geometry and vegetation characteristics as potentially influencing factors on sediment retention capacity at the watershed level are poorly understood. Thus, an investigation applying field and remotely sensed measurements, multi-regression models, redundancy and sensitivity analysis, and correlation analysis was conducted in a Mexican watershed where the characteristics of 273 check dams were evaluated 3-5 years after construction. Vegetation cover and dimensions of the channel were found to be the most important factors influencing check dam fate. Taller structures experienced the greatest failure risk, in contrast to lower and wider structures and associated vegetation cover that retained long and wide sediment wedges, which helped to stabilise the check dams. The potential sediment storage capacity of the check dams mainly depends on the downstream height of the structure, but also on the vegetation cover near the structure walls; check dams constructed across a range of channel dimensions are able to effectively store sediment. Overall, this study provides a quantitative evaluation of the dominant factors influencing the post-construction conditions of check dams and their ability to store sediment, and thus provides land managers insights into the best strategies for soil conservation at the watershed scale using check dams

    The suppressing role of miR-622 in renal cell carcinoma progression by down-regulation of CCL18/MAPK signal pathway

    No full text
    Abstract Background MicroRNAs have emerged as critical modulators of carcinogenesis and tumor progression including renal cell carcinoma (RCC). MiR-622 plays as a tumor inhibitor in some types of cancer, however, its role in kidney cancer is unknown. The purpose of the present work is to investigate the functional behaviors and regulatory mechanism of miR-622 in RCC. Results We examined the expression of miR-622 in RCC and adjacent normal tissues and then explored the roles of miR-622. The results of this analysis indicated that miR-622 activity was significantly downregulated in RCC tissues compared with the corresponding normal tissues, so did in RCC cell lines. MiR-622 was associated with RCC aggressiveness. MiR-622 in RCC cells decreased CCL18 expression and suppressed CCL18 activated MAPK signal pathway. Using Western blot and luciferase reporter assays, it was verified that CCL18 was a direct target of miR-622. A specific and inverse correlation between miR-622 and CCL18 expression was found in human RCC samples. Conclusions The results demonstrated that miR-622 acted as a tumor-promoting miRNA by targeting CCL18 in RCC

    Teaching practice research of higher vocational course the inspection and repair of automobile comfort and safety system in moral education

    No full text
    This article aims to study how to integrate the educational goal of cultivating talents through moral cultivation with the theoretical and practical teaching of the professional course. In order to realize a new teaching pattern of education, the study combined the professional course teaching with the ideological and political theory course teaching during the research process. Based on the practical teaching cases, this study followed the principle of combining qualitative and quantitative researches. The paper adopted several effective methods such as observation method, literature research method and case analysis method. It sums up the implementation approach of curriculum ideological and political construction strategy of “three integrations, two innovations and one connection”, so as to fulfill the fundamental task of establishing morality and cultivating talents

    Performance of the Cold-Bending Channel-Angle Buckling-Restrained Brace under Cyclic Loading

    No full text
    In this study, three restricted cold-bending channel-angle buckling-restrained brace (CCA-BRB) specimens were experimentally characterised by a low-reversed cyclic loading test. Three specimens had steel cores with cruciform cross section. Two restraining units were assembled to form an external constraint member, each of which was composed of an equilateral cold-bending channel and two equilateral cold-bending angles via welding. A gap or a thin silica gel plate was set between the internal core and the external constraint member to form an unbonded layer. Several evaluation parameters on the seismic performance, hysteretic behaviour, and energy dissipation capability of the CCA-BRB was investigated, including hysteresis curve, skeleton curve, compression strength adjustment factor, measured and computed stiffness, energy dissipation coefficient, equivalent viscous damping ratio, ductility coefficient, and cumulative plastic deformation. The test results and evaluation indices demonstrated that the hysteretic performance of braces with a rigid connection was stable. A Ramberg–Osgood model and two model parameters were calibrated to predict, with fidelity, the skeleton curve of CCA-BRB under cyclic load. The initial elastic stiffness of the brace used in practice should contain overall portions of the brace instead of the yielding portion of the brace. Finally, all the tested CCA-BRBs exhibited a stable energy absorption performance and verified the specimens’ construction was rational

    Deep Eutectic-like Solvents: Promising Green Media for Biomass Treatment and Preparation of Nanomaterials

    No full text
    Deep eutectic-like solvents (DESs) are recognized as environmentally benign media with highly tunable structures and properties. The usage of DES is promising in the field of biomass treatment and transformation, including pretreatment, selective dissolution, and separation of the main components. It serves as a green medium for modification of the biomass components, as well as preparation of biomass-derived nanomaterials. In this paper, the development on DES, including composition, properties, and characteristics was studied. The application of DES in biomass-derived nanomaterials is especially discussed. This review intends to provide references for adopting DES to improve biomass-based environmentally friendly nanomaterials

    Disorder analytic model-based CMT algorithms in vehicular sensor networks

    Get PDF
    Recently, vehicular sensor networks (VSNs) have emerged as a new intelligent transport networking paradigm in the Internet of Things. By sensing, collecting, and delivering traffic-related information, VSNs can significantly improve both driving experience and traffic flow control, especially in constrained urban environments. Latest technological advances enable vehicular devices to be equipped with multiple wireless interfaces, which can support cooperative communications for concurrent multipath transfer (CMT) in VSNs. However, path heterogeneity and vehicle mobilitycause CMT not to achieve the same high transport efficiency recorded in wired nonmobile network environments. This paper proposes a novel vehicular network-based CMT solution (VNCMT) to address the above issues and improve data delivery efficiency. VN-CMT is based on a CMTdisorder analytic model which can effectively and accurately evaluate the degree of out-of-order data. Based on this proposed model, a series of mechanisms are introduced as follows: (1) a packet disorder-reducing retransmission policy to reduce retransmission delay; (2) a path group selection algorithm to find the best path set for data multipath concurrent transfer; and (3) a data scheduling mechanism to distribute data according to each path’s capacity. Simulation results show how VN-CMT improves data delivery efficiency in comparison with an existing state-of-the-art solution

    Exploring the factors influencing the hydrological response of soil after low and high-severity fires with post-fire mulching in Mediterranean forests

    No full text
    Despite ample literature, the influence of the individual soil properties and covers on the hydrological response of burned soils of forests has not clearly identified. A clear understanding of the surface runoff and erosion rates altered by wildfires and prescribed fires is beneficial to identify the most suitable post-fire treatment. This study has carried out a combined analysis of the hydrological response of soil and its driving factors in burned forests of Central-Eastern Spain. The pine stands of these forests were subjected to both prescribed fire and wildfire, and, in the latter case, to post-fire treatment with mulching. Moreover, simple multi-regression models are proposed to predict runoff and erosion in the experimental conditions. In the case of the prescribed burning, the fire had a limited impact on runoff and erosion compared to the unburned areas, due to the limited changes in soil parameters. In contrast, the wildfire increased many-fold the runoff and erosion rates, but the mulching reduced the hydrological response of the burned soils, particularly for the first two-three rainfalls after the fire. The increase in runoff and erosion after the wildfire was associated to the removal of the vegetation cover, soil water repellency, and ash left by fire; the changes in water infiltration played a minor role on runoff and erosion. The multi-regression models developed for the prescribed fire were accurate to predict the post-fire runoff coefficients. However, these models were less reliable for predictions of the mean erosion rates. The predictions of erosion after wildfire and mulching were excellent, while those of runoff were not satisfactory (except for the mean values). These results are useful to better understand the relations among the hydrological effects of fire on one side and the main soil properties and covers on the other side. Moreover, the proposed prediction models are useful to support the planning activities of forest managers and hydrologists towards a more effective conservation of forest soils
    corecore