22 research outputs found

    Cold quark matter in a quasiparticle model: thermodynamic consistency and stellar properties

    Full text link
    The strong coupling in the effective quark mass was usually taken as a constant in a quasiparticle model while it is, in fact, running with an energy scale. With a running coupling, however, the thermodynamic inconsistency problem appears in the conventional treatment. We show that the renormalization subtraction point should be taken as a function of the summation of the biquadratic chemical potentials if the quark's current masses vanish, in order to ensure full thermodynamic consistency. Taking the simplest form, we study the properties of up-down (udud) quark matter, and confirm that the revised quasiparticle model fulfills the quantitative criteria for thermodynamic consistency. Moreover, we find that the maximum mass of an udud quark star can be larger than two times the solar mass, reaching up to 2.31M2.31M_{\odot}, for reasonable model parameters. However, to further satisfy the upper limit of tidal deformability Λ~1.4580\tilde{\Lambda}_{1.4}\leq 580 observed in the event GW170817, the maximum mass of an udud quark star can only be as large as 2.08M2.08M_{\odot}, namely Mmax2.08MM_{\text{max}}\lesssim2.08M_{\odot}. In other words, our results indicate that the measured tidal deformability for event GW170817 places an upper bound on the maximum mass of udud quark stars, but which does not rule out the possibility of the existence of quark stars composed of udud quark matter, with a mass of about two times the solar mass.Comment: 10 pages, 8 figure

    Molecular Signatures of the Primitive Prostate Stem Cell Niche Reveal Novel Mesenchymal-Epithelial Signaling Pathways

    Get PDF
    Signals between stem cells and stroma are important in establishing the stem cell niche. However, very little is known about the regulation of any mammalian stem cell niche as pure isolates of stem cells and their adjacent mesenchyme are not readily available. The prostate offers a unique model to study signals between stem cells and their adjacent stroma as in the embryonic prostate stem cell niche, the urogenital sinus mesenchyme is easily separated from the epithelial stem cells. Here we investigate the distinctive molecular signals of these two stem cell compartments in a mammalian system.We isolated fetal murine urogenital sinus epithelium and urogenital sinus mesenchyme and determined their differentially expressed genes. To distinguish transcripts that are shared by other developing epithelial/mesenchymal compartments from those that pertain to the prostate stem cell niche, we also determined the global gene expression of epidermis and dermis of the same embryos. Our analysis indicates that several of the key transcriptional components that are predicted to be active in the embryonic prostate stem cell niche regulate processes such as self-renewal (e.g., E2f and Ap2), lipid metabolism (e.g., Srebp1) and cell migration (e.g., Areb6 and Rreb1). Several of the enriched promoter binding motifs are shared between the prostate epithelial/mesenchymal compartments and their epidermis/dermis counterparts, indicating their likely relevance in epithelial/mesenchymal signaling in primitive cellular compartments. Based on differential gene expression we also defined ligand-receptor interactions that may be part of the molecular interplay of the embryonic prostate stem cell niche.We provide a comprehensive description of the transcriptional program of the major regulators that are likely to control the cellular interactions in the embryonic prostatic stem cell niche, many of which may be common to mammalian niches in general. This study provides a comprehensive source for further studies of mesenchymal/epithelial interactions in the prostate stem cell niche. The elucidation of pathways in the normal primitive niche may provide greater insight into mechanisms subverted during abnormal proliferative and oncogenic processes. Understanding these events may result in the development of specific targeted therapies for prostatic diseases such as benign prostatic hypertrophy and carcinomas

    An 18.9-minute Blue Large-Amplitude Pulsator Crossing the 'Hertzsprung Gap' of Hot Subdwarfs

    Full text link
    Blue large-amplitude pulsators (BLAPs) represent a new and rare class of hot pulsating stars with unusually large amplitudes and short periods. Up to now, only 24 confirmed BLAPs have been identified from more than one billion monitored stars, including a group with pulsation period longer than 20\sim 20 min (classical BLAPs, hereafter) and the other group with pulsation period below 8\sim 8 min. The evolutionary path that could give rise to such kinds of stellar configurations is unclear. Here we report on a comprehensive study of the peculiar BLAP discovered by the Tsinghua University - Ma Huateng Telescopes for Survey (TMTS), TMTS J035143.63+584504.2 (TMTS-BLAP-1). This new BLAP has an 18.9 min pulsation period and is similar to the BLAPs with a low surface gravity and an extended helium-enriched envelope, suggesting that it is a low-gravity BLAP at the shortest-period end. In particular, the long-term monitoring data reveal that this pulsating star has an unusually large rate of period change, P_dot/P=2.2e-6/yr. Such a significant and positive value challenges its origins from both helium-core pre-white-dwarfs and core helium-burning subdwarfs, but is consistent with that derived from shell helium-burning subdwarfs. The particular pulsation period and unusual rate of period change indicate that TMTS-BLAP-1 is at a short-lived (~10^6 yr) phase of shell-helium ignition before the stable shell-helium burning; in other words, TMTS-BLAP-1 is going through a "Hertzsprung gap" of hot subdwarfs.Comment: 26 pages, 12 figures, 4 tables, published on Nature Astronomy, URL: https://www.nature.com/articles/s41550-022-01783-

    Both helix topology and counterion distribution contribute to the more effective charge screening in dsRNA compared with dsDNA

    Get PDF
    The recent discovery of the RNA interference mechanism emphasizes the biological importance of short, isolated, double-stranded (ds) RNA helices and calls for a complete understanding of the biophysical properties of dsRNA. However, most previous studies of the electrostatics of nucleic acid duplexes have focused on DNA. Here, we present a comparative investigation of electrostatic effects in RNA and DNA. Using resonant (anomalous) and non-resonant small-angle X-ray scattering, we characterized the charge screening efficiency and counterion distribution around short (25 bp) dsDNA and RNA molecules of comparable sequence. Consistent with theoretical predictions, we find counterion mediated screening to be more efficient for dsRNA than dsDNA. Furthermore, the topology of the RNA A-form helix alters the spatial distribution of counterions relative to B-form DNA. The experimental results reported here agree well with ion-size-corrected non-linear Poisson–Boltzmann calculations. We propose that differences in electrostatic properties aid in selective recognition of different types of short nucleic acid helices by target binding partners

    Molecular Signatures of Prostate Stem Cells Reveal Novel Signaling Pathways and Provide Insights into Prostate Cancer

    Get PDF
    BACKGROUND:The global gene expression profiles of adult and fetal murine prostate stem cells were determined to define common and unique regulators whose misexpression might play a role in the development of prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS:A distinctive core of transcriptional regulators common to both fetal and adult primitive prostate cells was identified as well as molecules that are exclusive to each population. Elements common to fetal and adult prostate stem cells include expression profiles of Wnt, Shh and other pathways identified in stem cells of other organs, signatures of the aryl-hydrocarbon receptor, and up-regulation of components of the aldehyde dehydrogenase/retinoic acid receptor axis. There is also a significant lipid metabolism signature, marked by overexpression of lipid metabolizing enzymes and the presence of the binding motif for Srebp1. The fetal stem cell population, characterized by more rapid proliferation and self-renewal, expresses regulators of the cell cycle, such as E2f, Nfy, Tead2 and Ap2, at elevated levels, while adult stem cells show a signature in which TGF-beta has a prominent role. Finally, comparison of the signatures of primitive prostate cells with previously described profiles of human prostate tumors identified stem cell molecules and pathways with deregulated expression in prostate tumors including chromatin modifiers and the oncogene, Erg. CONCLUSIONS/SIGNIFICANCE:Our data indicate that adult prostate stem or progenitor cells may acquire characteristics of self-renewing primitive fetal prostate cells during oncogenesis and suggest that aberrant activation of components of prostate stem cell pathways may contribute to the development of prostate tumors

    A Progressive Buffering Method for Road Map Update Using OpenStreetMap Data

    No full text
    Web 2.0 enables a two-way interaction between servers and clients. GPS receivers become available to more citizens and are commonly found in vehicles and smart phones, enabling individuals to record and share their trajectory data on the Internet and edit them online. OpenStreetMap (OSM) makes it possible for citizens to contribute to the acquisition of geographic information. This paper studies the use of OSM data to find newly mapped or built roads that do not exist in a reference road map and create its updated version. For this purpose, we propose a progressive buffering method for determining an optimal buffer radius to detect the new roads in the OSM data. In the next step, the detected new roads are merged into the reference road maps geometrically, topologically, and semantically. Experiments with OSM data and reference road maps over an area of 8494 km2 in the city of Wuhan, China and five of its 5 km × 5 km areas are conducted to demonstrate the feasibility and effectiveness of the method. It is shown that the OSM data can add 11.96% or a total of 2008.6 km of new roads to the reference road maps with an average precision of 96.49% and an average recall of 97.63%

    A Nonmonotone Gradient Algorithm for Total Variation Image Denoising Problems

    No full text
    The total variation (TV) model has been studied extensively because it is able to preserve sharp attributes and capture some sparsely critical information in images. However, TV denoising problem is usually ill-conditioned that the classical monotone projected gradient method cannot solve the problem efficiently. Therefore, a new strategy based on nonmonotone approach is digged out as accelerated spectral project gradient (ASPG) for solving TV. Furthermore, traditional TV is handled by vectorizing, which makes the scheme far more complicated for designing algorithms. In order to simplify the computing process, a new technique is developed in view of matrix rather than traditional vector. Numerical results proved that our ASPG algorithm is better than some state-of-the-art algorithms in both accuracy and convergence speed

    Bioelectrochemical Systems for Groundwater Remediation: The Development Trend and Research Front Revealed by Bibliometric Analysis

    No full text
    Due to the deficiency of fresh water resources and the deterioration of groundwater quality worldwide, groundwater remedial technologies are especially crucial for preventing groundwater pollution and protecting the precious groundwater resource. Among the remedial alternatives, bioelectrochemical systems have unique advantages on both economic and technological aspects. However, it is rare to see a deep study focused on the information mining and visualization of the publications in this field, and research that can reveal and visualize the development trajectory and trends is scarce. Therefore, this study summarizes the published information in this field from the Web of Science Core Collection of the last two decades (1999–2018) and uses Citespace to quantitatively visualize the relationship of authors, published countries, organizations, funding sources, and journals and detect the research front by analyzing keywords and burst terms. The results indicate that the studies focused on bioelectrochemical systems for groundwater remediation have had a significant increase during the last two decades, especially in China, Germany and Italy. The national research institutes and universities of the USA and the countries mentioned above dominate the research. Environmental Science & Technology, Applied and Environmental Microbiology, and Water Research are the most published journals in this field. The network maps of the keywords and burst terms suggest that reductive microbial diversity, electron transfer, microbial fuel cell, etc., are the research hotspots in recent years, and studies focused on microbial enrichment culture, energy supply/recovery, combined pollution remediation, etc., should be enhanced in future
    corecore