93 research outputs found

    On the Expected Discounted Penalty Function for the Classical Risk Model with Potentially Delayed Claims and Random Incomes

    Get PDF
    We focus on the expected discounted penalty function of a compound Poisson risk model with random incomes and potentially delayed claims. It is assumed that each main claim will produce a byclaim with a certain probability and the occurrence of the byclaim may be delayed depending on associated main claim amount. In addition, the premium number process is assumed as a Poisson process. We derive the integral equation satisfied by the expected discounted penalty function. Given that the premium size is exponentially distributed, the explicit expression for the Laplace transform of the expected discounted penalty function is derived. Finally, for the exponential claim sizes, we present the explicit formula for the expected discounted penalty function

    Gattini 2010: Cutting Edge Science at the Bottom of the World

    Get PDF
    The high altitude Antarctic sites of Dome A and the South Pole offer intriguing locations for future large scale optical astronomical Observatories. The Gattini project was created to measure the optical sky brightness, large area cloud cover and aurora of the winter-time sky above such high altitude Antarctic sites. The Gattini-DomeA camera was installed on the PLATO instrument module as part of the Chinese-led traverse to the highest point on the Antarctic plateau in January 2008. This single automated wide field camera contains a suite of Bessel photometric filters (B, V, R) and a long-pass red filter for the detection and monitoring of OH emission. We have in hand one complete winter-time dataset (2009) from the camera that was recently returned in April 2010. The Gattini-South Pole UV camera is a wide-field optical camera that in 2011 will measure for the first time the UV properties of the winter-time sky above the South Pole dark sector. This unique dataset will consist of frequent images taken in both broadband U and B filters in addition to high resolution (R similar to 5000) long slit spectroscopy over a narrow bandwidth of the central field. The camera is a proof of concept for the 2m-class Antarctic Cosmic Web Imager telescope, a dedicated experiment to directly detect and map the redshifted lyman alpha fluorescence or Cosmic Web emission we believe possible due to the unique geographical qualities of the site. We present the current status of both projects

    The First Release of the CSTAR Point Source Catalog from Dome A, Antarctica

    Get PDF
    In 2008 January the 24th Chinese expedition team successfully deployed the Chinese Small Telescope ARray (CSTAR) to DomeA, the highest point on the Antarctic plateau. CSTAR consists of four 14.5cm optical telescopes, each with a different filter (g, r, i and open) and has a 4.5degree x 4.5degree field of view (FOV). It operates robotically as part of the Plateau Observatory, PLATO, with each telescope taking an image every 30 seconds throughout the year whenever it is dark. During 2008, CSTAR #1 performed almost flawlessly, acquiring more than 0.3 million i-band images for a total integration time of 1728 hours during 158 days of observations. For each image taken under good sky conditions, more than 10,000 sources down to 16 mag could be detected. We performed aperture photometry on all the sources in the field to create the catalog described herein. Since CSTAR has a fixed pointing centered on the South Celestial Pole (Dec =-90 degree), all the sources within the FOV of CSTAR were monitored continuously for several months. The photometric catalog can be used for studying any variability in these sources, and for the discovery of transient sources such as supernovae, gamma-ray bursts and minor planets.Comment: 1 latex file and 9 figures The paper is accepted by PAS

    The sky brightness and transparency in i-band at Dome A, Antarctica

    Full text link
    The i-band observing conditions at Dome A on the Antarctic plateau have been investigated using data acquired during 2008 with the Chinese Small Telescope ARray. The sky brightness, variations in atmospheric transparency, cloud cover, and the presence of aurorae are obtained from these images. The median sky brightness of moonless clear nights is 20.5 mag arcsec^{-2} in the SDSS ii band at the South Celestial Pole (which includes a contribution of about 0.06 mag from diffuse Galactic light). The median over all Moon phases in the Antarctic winter is about 19.8 mag arcsec^{-2}. There were no thick clouds in 2008. We model contributions of the Sun and the Moon to the sky background to obtain the relationship between the sky brightness and transparency. Aurorae are identified by comparing the observed sky brightness to the sky brightness expected from this model. About 2% of the images are affected by relatively strong aurorae.Comment: There are 1 Latex file and 14 figures accepted by A

    PHOTOMETRY OF VARIABLE STARS FROM DOME A, ANTARCTICA: RESULTS FROM THE 2010 OBSERVING SEASON

    Get PDF
    We present results from a season of observations with the Chinese Small Telescope ARray (CSTAR), obtained over 183 days of the 2010 Antarctic winter. We carried out high-cadence time-series aperture photometry of 20,000 stars with i<15.3 mag located in a 23 square-degree region centered on the south celestial pole. We identified 188 variable stars, including 67 new objects relative to our 2008 observations, thanks to broader synoptic coverage, a deeper magnitude limit and a larger field of view. We used the photometric data set to derive site statistics from Dome A. Based on two years of observations, we find that extinction due to clouds at this site is less than 0.1 and 0.4 mag during 45% and 75% of the dark time, respectively.Comment: Accepted for publication in the Astronomical Journal. Light curves and finding charts of all variable stars will be made available at http://casdc.china-vo.org/data/csta

    Exoplanets in the Antarctic Sky I. The first data release of AST3-II (CHESPA) and new found variables within the southern CVZ of TESS

    Get PDF
    Located at Dome A, the highest point of the Antarctic plateau, the Chinese Kunlun station is considered to be one of the best ground-based photometric sites because of its extremely cold, dry, and stable atmosphere. A target can be monitored from there for over 40 days without diurnal interruption during a polar winter. This makes Kunlun station a perfect site to search for short-period transiting exoplanets. Since 2008, an observatory has existed at Kunlun station, and three telescopes are working there. Using these telescopes, the AST3 project has been carried out over the last 6 yr with a search for transiting exoplanets as one of its key programs (CHESPA). In the austral winters of 2016 and 2017, a set of target fields in the southern continuous viewing zone (CVZ) of TESS were monitored by the AST3-II telescope. In this paper, we introduce the CHESPA and present the first data release containing photometry of 26,578 bright stars (m(i) <= 15). The best photometric precision at the optimum magnitude for the survey is around 2 mmag. To demonstrate the data quality, we also present a catalog of 221 variables with a brightness variation greater than 5 mmag from the 2016 data. Among these variables, 179 are newly identified periodic variables not listed in the AAVSO database (https://www.aavso.org/), and 67 are listed in the Candidate Target List. These variables will require careful attention to avoid false-positive signals when searching for transiting exoplanets. Dozens of new transiting exoplanet candidates will be released in a subsequent paper

    Exoplanets in the Antarctic Sky. II. 116 Transiting Exoplanet Candidates Found by AST3-II (CHESPA) within the Southern CVZ of TESS

    Get PDF
    We report first results from the CHinese Exoplanet Searching Program from Antarctica (CHESPA)-a wide-field high-resolution photometric survey for transiting exoplanets carried out using telescopes of the AST3 (Antarctic Survey Telescopes times 3) project. There are now three telescopes (AST3-I, AST3-II, and CSTAR-II) operating at Dome A-the highest point on the Antarctic Plateau-in a fully automatic and remote mode to exploit the superb observing conditions of the site, and its long and uninterrupted polar nights. The search for transiting exoplanets is one of the key projects for AST3. During the austral winters of 2016 and 2017 we used the AST3-II telescope to survey a set of target fields near the southern ecliptic pole, falling within the continuous viewing zone of the TESS mission. The first data release of the 2016 data, including images, catalogs, and light curves of 26,578 bright stars (7.5 <= m(i) <= 15), was presented in Zhang et al. The best precision, as measured by the rms of the light curves at the optimum magnitude of the survey (m(i) = 10), is around 2 mmag. We detect 222 objects with plausible transit signals from these data, 116 of which are plausible transiting exoplanet candidates according to their stellar properties as given by the TESS Input Catalog, Gaia DR2, and TESS-HERMES spectroscopy. With the first data release from TESS expected in late 2018, this candidate list will be timely for improving the rejection of potential false-positives
    corecore