172 research outputs found

    A novel absorptive/reflective solar concentrator for heat and electricity generation: an optical and thermal analysis.

    Get PDF
    The crossed compound parabolic concentrator (CCPC) is one of the most efficient non-imaging solar concentrators used as a stationary solar concentrator or as a second stage solar concentrator. In this study, the CCPC is modified to demonstrate for the first time a new generation of solar concentrators working simultaneously as an electricity generator and thermal collector. The CCPC is designed to have two complementary surfaces, one reflective and one absorptive, and is named as an absorptive/reflective CCPC (AR-CCPC). Usually, the height of the CCPC is truncated with a minor sacrifice of the geometric concentration. These truncated surfaces rather than being eliminated are instead replaced with absorbent surfaces to collect heat from solar radiation. The optical efficiency including absorptive/reflective part of the AR-CCPC was simulated and compared for different geometric concentration ratios varying from 3.6× to 4×. It was found that the combined optical efficiency of the AR-CCPC 3.6×/4× remained constant and high all day long and that it had the highest total optical efficiency compared to other concentrators. In addition, the temperature distributions of AR-CCPC surfaces and the assembled solar cell were simulated based on those heat flux boundary conditions. It was shown that the addition of a thermal absorbent surface can increase the wall temperature. The maximum value reached 321.5 K at the front wall under 50° incidence. The experimental verification was also adopted to show the benefits of using absorbent surfaces. The initial results are very promising and significant for the enhancement of solar concentrator systems with lower concentrations

    Coupled simulation of performance of a crossed compound parabolic concentrator with solar cell

    Get PDF
    An optimal installation of a compound parabolic concentrator (CCPC) into a scalable solar thermoelectrics and photovoltaics system is desirable by applying analytical tools to improve the optical and thermal performance of a CCPC with a solar cell. In this paper, the optical and thermal performances of an isolated CCPC with solar cell are investigated by employing commercial software ‘ANSYS CFX 15.0’ with a coupled optical grey and multiphysics model. Numerical results are validated against the experimental data at various incidence angles, especially for the optical concentration ratio and optical efficiency. Results confirm that ‘ANSYS CFX’ is an effective numerical tool for determining correctly both the optical and thermal behaviour of CCPC. The very important finding is a highest temperature core in the silicon layer of solar cell which may be responsible for a solar cell to work properly. The limitation of the work is that the electric performance of the solar cell is not involved and the simulations are steady

    A Glutamic Acid-Rich Protein Identified in Verticillium dahliae from an Insertional Mutagenesis Affects Microsclerotial Formation and Pathogenicity

    Get PDF
    Verticillium dahliae Kleb. is a phytopathogenic fungus that causes wilt disease in a wide range of crops, including cotton. The life cycle of V. dahliae includes three vegetative phases: parasitic, saprophytic and dormant. The dormant microsclerotia are the primary infectious propagules, which germinate when they are stimulated by root exudates. In this study, we report the first application of Agrobacterium tumefaciens-mediated transformation (ATMT) for construction of insertional mutants from a virulent defoliating isolate of V. dahliae (V592). Changes in morphology, especially a lack of melanized microsclerotia or pigmentation traits, were observed in mutants. Together with the established laboratory unimpaired root dip-inoculation approach, we found insertional mutants to be affected in their pathogenicities in cotton. One of the genes tagged in a pathogenicity mutant encoded a glutamic acid-rich protein (VdGARP1), which shared no significant similarity to any known annotated gene. The vdgarp1 mutant showed vigorous mycelium growth with a significant delay in melanized microsclerotial formation. The expression of VdGARP1 in the wild type V529 was organ-specific and differentially regulated by different stress agencies and conditions, in addition to being stimulated by cotton root extract in liquid culture medium. Under extreme infertile nutrient conditions, VdGARP1 was not necessary for melanized microsclerotial formation. Taken together, our data suggest that VdGARP1 plays an important role in sensing infertile nutrient conditions in infected cells to promote a transfer from saprophytic to dormant microsclerotia for long-term survival. Overall, our findings indicate that insertional mutagenesis by ATMT is a valuable tool for the genome-wide analysis of gene function and identification of pathogenicity genes in this important cotton pathogen

    Insight-HXMT observations of Swift J0243.6+6124 during its 2017-2018 outburst

    Full text link
    The recently discovered neutron star transient Swift J0243.6+6124 has been monitored by {\it the Hard X-ray Modulation Telescope} ({\it Insight-\rm HXMT). Based on the obtained data, we investigate the broadband spectrum of the source throughout the outburst. We estimate the broadband flux of the source and search for possible cyclotron line in the broadband spectrum. No evidence of line-like features is, however, found up to 150 keV\rm 150~keV. In the absence of any cyclotron line in its energy spectrum, we estimate the magnetic field of the source based on the observed spin evolution of the neutron star by applying two accretion torque models. In both cases, we get consistent results with B∼1013 GB\rm \sim 10^{13}~G, D∼6 kpcD\rm \sim 6~kpc and peak luminosity of >1039 erg s−1\rm >10^{39}~erg~s^{-1} which makes the source the first Galactic ultraluminous X-ray source hosting a neutron star.Comment: publishe
    • …
    corecore