283 research outputs found

    Decoding Taste Information in Human Brain: A Temporal and Spatial Reconstruction Data Augmentation Method Coupled with Taste EEG

    Full text link
    For humans, taste is essential for perceiving food's nutrient content or harmful components. The current sensory evaluation of taste mainly relies on artificial sensory evaluation and electronic tongue, but the former has strong subjectivity and poor repeatability, and the latter is not flexible enough. This work proposed a strategy for acquiring and recognizing taste electroencephalogram (EEG), aiming to decode people's objective perception of taste through taste EEG. Firstly, according to the proposed experimental paradigm, the taste EEG of subjects under different taste stimulation was collected. Secondly, to avoid insufficient training of the model due to the small number of taste EEG samples, a Temporal and Spatial Reconstruction Data Augmentation (TSRDA) method was proposed, which effectively augmented the taste EEG by reconstructing the taste EEG's important features in temporal and spatial dimensions. Thirdly, a multi-view channel attention module was introduced into a designed convolutional neural network to extract the important features of the augmented taste EEG. The proposed method has accuracy of 99.56%, F1-score of 99.48%, and kappa of 99.38%, proving the method's ability to distinguish the taste EEG evoked by different taste stimuli successfully. In summary, combining TSRDA with taste EEG technology provides an objective and effective method for sensory evaluation of food taste.Comment: 10 pages, 11 figures, 30 references, article is being submitte

    Effect of Lycii fructus polysaccharides on ovulation failure in rats

    Get PDF
    Purpose: To investigate the effect of Lycii Fructus polysaccharides (LFPS) on ovulation failure.Methods: A rat model of ovulation failure was established by intragastric administration of hydroxyurea (300 mg/kg). Rats with ovulation failure then received LFPS via oral administration at doses of 100, 200, or 400 mg/kg. The body, uterus and ovary of each rat were weighed using electronic scales. The hypothalamic-pituitary-ovarian (HPO) axis hormones, including estradiol (E2) level, follicle-stimulating hormone (FSH) activity, and luteinizing hormone (LH) activity in the serum of each rat were determined by enzyme-linked immunosorbent assay (ELISA). The levels of pro-apoptotic proteins (Fas, FasL, FADD, c-caspase-8, c-caspase-10, c-caspase-3, c-caspase-6, and c-caspase-7) in the ovarian tissue of each rat were detected by western blot.Results: Hydroxyurea reduced significantly (p < 0.01) uterus and ovary indices (uterus or ovary weight/body weight) (0.119 and 0.026 %), E2 level (3.42 pmol/L), and FSH and LH activities (2.28 and 2.76 U/L), compared with those in the normal group (0.169 and 0.039 %; 6.72 pmol/L; 2.76 and 3.75 U/L). Hydroxyurea increased significantly (p < 0.01) the levels of the above-mentioned pro-apoptotic proteins relative to those in the normal group. LFPS (100, 200, or 400 mg/kg) reversed significantly (p < 0.05 or 0.01) the effect of hydroxyurea on all of the above indices.Conclusion: LFPS exhibits a protective effect on hydroxyurea-induced ovulation failure by regulating the HPO axis hormones and death receptor-mediated apoptotic pathway.Keywords: Lycii Fructus polysaccharides, Ovulation failure, Hypothalamic-pituitary-ovarian axis, Death receptor-mediated apoptotic pathwa

    Gene therapy for C-26 colon cancer using heparin-polyethyleneimine nanoparticle-mediated survivin T34A

    Get PDF
    Ling Zhang1,*, Xiang Gao1,2,*, Ke Men1, BiLan Wang1, Shuang Zhang1, Jinfeng Qiu1, Meijuan Huang1, MaLing Gou1, Ning Huang2, ZhiYong Qian1, Xia Zhao1, YuQuan Wei11State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, 2Department of Pathophysiology, College of Preclinical and Forensic Medical Sciences, Sichuan University, Chengdu, People’s Republic of China*These authors contributed equally to this workBackground: Gene therapy provides a novel method for the prevention and treatment of cancer, but the clinical application of gene therapy is restricted, mainly because of the absence of an efficient and safe gene delivery system. Recently, we developed a novel nonviral gene carrier, ie, heparin-polyethyleneimine (HPEI) nanoparticles for this purpose.Methods and results: HPEI nanoparticles were used to deliver plasmid-expressing mouse survivin-T34A (ms-T34A) to treat C-26 carcinoma in vitro and in vivo. According to the in vitro studies, HPEI nanoparticles could efficiently transfect the pGFP report gene into C-26 cells, with a transfection efficiency of 30.5% ± 2%. Moreover, HPEI nanoparticle-mediated ms-T34A could efficiently inhibit the proliferation of C-26 cells by induction of apoptosis in vitro. Based on the in vivo studies, HPEI nanoparticles could transfect the Lac-Z report gene into C-26 cells in vivo. Intratumoral injection of HPEI nanoparticle-mediated ms-T34A significantly inhibited growth of subcutaneous C-26 carcinoma in vivo by induction of apoptosis and inhibition of angiogenesis.Conclusion: This research suggests that HPEI nanoparticle-mediated ms-T34A may have a promising role in C-26 colon carcinoma therapy.Keywords: gene therapy, mouse survivin-T34A, colon cancer, polyethyleneimine, nanoparticles, cancer therap

    Chemical characteristics of cloud water and the impacts on aerosol properties at a subtropical mountain site in Hong Kong SAR

    Get PDF
    To investigate the cloud water chemistry and the effects of cloud processing on aerosol properties, comprehensive field observations of cloud water, aerosols, and gasphase species were conducted at a mountaintop site in Hong Kong SAR in October and November 2016. The chemical composition of cloud water including water-soluble ions, dissolved organic matter (DOM), carbonyl compounds (refer to aldehydes and acetone), carboxylic acids, and trace metals was quantified. The measured cloud water was very acidic with a mean pH of 3.63, as the ammonium (174 μeq L-1) was insufficient for neutralizing the dominant sulfate (231 μeq L-1) and nitrate (160 μeq L-1). Substantial DOM (9.3 mgC L-1) was found in cloud water, with carbonyl compounds and carboxylic acids accounting for 18% and 6% in carbon molar concentrations, respectively. Different from previous observations, concentrations of methylglyoxal (19.1 μM; μM is equal to μmol L-1) and glyoxal (6.72 μM) were higher than that of formaldehyde (1.59 μM). The partitioning of carbonyls between cloud water and the gas phase was also investigated. The measured aqueous fractions of dicarbonyls were comparable to the theoretical estimations, while significant aqueous-phase supersaturation was found for less soluble monocarbonyls. Both organics and sulfate were significantly produced in cloud water, and the aqueous formation of organics was more enhanced by photochemistry and under less acidic conditions. Moreover, elevated sulfate and organics were measured in the cloudprocessed aerosols, and they were expected to contribute largely to the increase in droplet-mode aerosol mass fraction. This study demonstrates the significant role of clouds in altering the chemical compositions and physical properties of aerosols via scavenging and aqueous chemical processing, providing valuable information about gas-cloud-aerosol interactions in subtropical and coastal regions. © 2020 Author(s). This work is distributed under the Creative Commons Attribution 4.0 License

    Continuous twin screw rheo-extrusion of an AZ91D magnesium alloy

    Get PDF
    © The Minerals, Metals & Materials Society and ASM International 2012The twin screw rheo-extrusion (TSRE) is designed to take advantage of the nondendritc microstructure and thixotropic characterization of semisolid-metal slurries and produce simple metal profiles directly from melts. The extrusion equipment consists of a rotor-stator high shear slurry maker, a twin screw extruder, and a die assembly. The process is continuous and has a potential for significantly saving energy, manufacturing cost, and enhancing efficiency. The present investigation was carried out to study the process performance for processing rods of an AZ91D magnesium alloy and the microstructure evolution during processing. The semisolid slurry prepared by the process was characterized by uniformly distributed nondendritic granular primary phase particles. AZ91D rods with uniform and fine microstructures and moderate mechanical properties were produced. For the given slurry making parameters, decreasing extrusion temperature was found to improve microstructures and properties. The mechanisms of particle granulation and refinement and the effect of processing parameters on process performance and thermal management are discussed. © 2012 The Minerals, Metals & Materials Society and ASM International.EPSRC (UK) and Rautomead Lt

    Curative efficacy of entomopathogenic nematodes against white grubs in honeysuckle fields

    Get PDF
    Root-feeding white grubs are one of the most serious pests of honeysuckle trees (Lonicera japonica) in China, directly damaging their roots and facilitating infection by soil pathogens. Entomopathogenic nematodes (EPNs) are considered as potential control agents against soil-dwelling insect pests. This study aimed to identify effective EPN species against white grubs through bioassay and field experiments. Among the EPN species screened against Holotrichia oblita under laboratory conditions, Steinernema feltiae and Heterorhabditis indica had low virulence, while S. longicaudum, S. glaseri, and H. bacteriophora applied at a rate of 400 IJs/larva caused a higher corrected mortality (80.00 ± 5.77%), which screened them as good candidates for future applications. The field experiments showed that both S. longicaudum and H. bacteriophora were approximately as effective in reducing white grubs as the insecticide phoxim, whereas S. glaseri caused a significantly lower reduction compared with these two EPNs and phoxim. Plant mortalities obtained from S. longicaudum, H. bacteriophora and the insecticide treatment plots were significantly lower than those observed in the water-treated control plots. All EPNs examined could establish well in the treated honeysuckle fields for 42 d, confirmed by Tenebrio molitar larvae baiting technique. Our findings suggest that EPNs could provide curative efficacy against white grubs and significantly reduce plant death in honeysuckle fields

    Photoinduced Production of Chlorine Molecules from Titanium Dioxide Surfaces Containing Chloride

    Get PDF
    Titanium dioxide (TiO2) is extensively used with the process of urbanization and potentially influences atmospheric chemistry, which is yet unclear. In this work, we demonstrated strong production of Cl-2 from illuminated KCl-coated TiO2 membranes and suggested an important daytime source of chlorine radicals. We found that water and oxygen were required for the reactions to proceed, and Cl-2 production increased linearly with the amount of coated KCl, humidity of the carrier gas, and light intensity. These results suggested that water promotes the reactivity of coated KCl via interaction with the crystal lattice to release free chloride ions (Cl-). The free Cl- transfer charges to O-2 via photoactivated TiO2 to form Cl-2 and probably the O-2(-) radical. In addition to Cl-2, ClO and HOCl were also observed via the complex reactions between Cl/Cl-2 and HOx. An intensive campaign was conducted in Shanghai, during which evident daytime peaks of Cl-2 were observed. Estimated Cl-2 production from TiO2 photocatalysis can be up to 0.2 ppb/h when the TiO2-containing surface reaches 20% of the urban surface, and highly correlated to the observed Cl-2. Our results suggest a non-negligible role of TiO2 in atmospheric photochemistry via altering the radical budget.Peer reviewe
    corecore